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Abstract 

Background Prediabetes is one of the most common metabolic disorders in the aging process. This study aims 
to investigate the longitudinal changes in the Cardiometabolic Index (CMI) and their relationship with the natural 
course of prediabetes in middle-aged and elderly populations.

Methods This study used longitudinal data from the China Health and Retirement Longitudinal Study. The natural 
course of prediabetes was used to describe the trend in glycemic development during follow-up, defined as progres-
sion to diabetes or regression to normoglycaemia. Longitudinal changes in CMI were categorized into CMI transition 
patterns (consistently-low, low-to-high, high-to-low, and consistently-high) and cumulative CMI (CumCMI) exposure. 
CumCMI was calculated as the ratio of the mean CMI values measured during the longitudinal surveys to the total 
duration of exposure.

Results According to the inclusion and exclusion criteria, a total of 2,544 prediabetic participants from the China 
Health and Retirement Longitudinal Study cohort were included in the study. During a median follow-up of 3 years, 
the rates of progression and regression of prediabetes were as follows in the consistently-low, low-to-high, high-to-
low, and consistently-high CMI pattern groups: 9.94%, 16.55%, 11.72%, 20.32% for progression; and 24.97%, 22.37%, 
23.81%, 20.42% for regression, respectively. Regarding prediabetes progression, our results found that a high base-
line CMI level and high CumCMI exposure during follow-up significantly increased the risk of developing diabetes 
in prediabetic patients. Furthermore, during follow-up, compared to the low-to-high CMI pattern group, the consist-
ently-low CMI pattern was protective for prediabetic patients. Concerning prediabetes regression, we only observed 
a negative correlation between baseline CMI and follow-up CumCMI exposure with outcomes in the elderly 
(age ≥ 60 years). Specifically, high baseline CMI levels and high follow-up CumCMI exposure significantly hindered 
prediabetes regression in the elderly.

Conclusion In this prospective cohort study of middle-aged and elderly populations, we found that longitudinal 
changes in CMI were associated with the progression and regression of prediabetes. High CumCMI exposure dur-
ing follow-up significantly increased the risk of diabetes events and hindered the recovery of normoglycaemia 
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Background
Prediabetes refers to an intermediate stage where blood 
glucose levels are elevated above normal but not yet high 
enough to be classified as diabetes. It is one of the most 
common metabolic disorders in the aging process [1, 2]. 
According to recent epidemiological analyses of the Chi-
nese population, the prevalence of prediabetes among 
Chinese adults is approximately one-third, with middle-
aged and elderly individuals accounting for nearly half of 
this population [3]. For individuals diagnosed with pre-
diabetes, the primary objective is to improve the natural 
course of the condition, including delaying the progres-
sion from prediabetes to diabetes and restoring blood 
glucose levels to normal [4, 5]. Early intervention in pre-
diabetes can significantly reduce the risk of future diabe-
tes and various chronic complications [6–14]. From an 
epidemiological perspective, exploring modifiable factors 
that influence the natural course of prediabetes is of great 
value, as it may positively impact the management of this 
condition.

The Cardiometabolic Index (CMI) is a simple param-
eter developed by Ichiro Wakabayashi and his team in 
2015 to assess metabolic diseases [15]. It is composed of 
height, waist circumference (WC), and lipid parameters 
including triglycerides (TG) and high-density lipopro-
tein cholesterol (HDL-C). Previous studies have shown 
that CMI has significant potential in risk assessment for 
cardiometabolic diseases [16], fatty liver disease [17–19], 
atherosclerosis [20], metabolic syndrome [21], hyper-
uricemia [22], ischemic stroke [23, 24], renal insufficiency 
[25, 26], and depression [27, 28]. Additionally, data from 
various countries consistently demonstrate that CMI is 
effective in identifying the risk of dysglycemia [29–31] 
and is closely associated with insulin resistance [29, 32]. 
Given the extensive application of the CMI in metabolic 
diseases, further evaluation of its dynamic changes could 
offer valuable insights for disease prevention and inter-
vention strategies. In this context, we hypothesized that 
assessing longitudinal variations in CMI, based on meas-
urements taken at different time points, could signifi-
cantly contribute to understanding the natural course of 
prediabetes. To test this hypothesis, this study intends 
to evaluate the longitudinal changes in CMI, including 
the CMI transition patterns and cumulative CMI (Cum-
CMI) exposure, utilizing data from the first national sur-
vey (2011–2012, baseline) and the third national survey 

(2015–2016, follow-up) of the China Health and Retire-
ment Longitudinal Study (CHARLS); and further to eval-
uate the effects of baseline CMI and longitudinal changes 
in CMI on the natural course of prediabetes.

Methods
Study design and population
The CHARLS is a prospective, dynamic project focused 
on middle-aged and elderly populations in China [33]. 
The detailed study design is described in the online sup-
plementary methods, with Supplementary Fig. 1 showing 
the screening process of the CHARLS cohort. Briefly, the 
nationwide CHARLS cohort began in 2011–2012, with 
subsequent national follow-up surveys conducted every 
2–3 years. To date, CHARLS has completed five rounds 
of national surveys, with blood sample data provided by 
participants in the first wave (2011–2012) and the third 
wave (2015–2016). In the current study, we included pre-
diabetic participants from the first wave of CHARLS and 
determined the natural course of these patients based on 
data from the third wave. The detailed study process was 
shown in Fig. 1.

Ethical approval
The CHARLS cohort was authorized by the Institutional 
Review Board of Peking University (IRB00001052–
11015), and all participants provided written informed 
consent. The current study is observational, and our 
results is reported in accordance with the STROBE 
guidelines. The entire study process complies with the 
requirements of the Declaration of Helsinki.

Covariate assessment
From the CHARLS questionnaire, we extracted 
participants’demographic information (gender, age), dis-
ease information [including hypertension, cardiovascular 
disease (CVD), and stroke; detailed diagnostic informa-
tion is available in the online supplementary methods], 
physical measurements [height, weight, WC, and blood 
pressure], health behaviors (smoking and drinking sta-
tus), and biochemical parameters.

Physical measurements were conducted by trained 
researchers using standardized equipment. Waist 
circumference (WC) was measured with the sub-
ject standing upright, using a soft tape measure posi-
tioned horizontally around the waist at the level of the 

in the elderly. Moreover, maintaining a consistently-low CMI pattern during follow-up reduced the risk of diabetes 
in prediabetic patients.

Keywords Cardiometabolic index, Cumulative cardiometabolic index exposure, Cardiometabolic index transition 
patterns, Natural course of prediabetes, CHARLS
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umbilicus. Measurements were taken at the end of a calm 
expiration while holding the breath, with an accuracy of 
0.1 cm.

Health behaviors, including smoking and drinking sta-
tus, were assessed based on the following standardized 
questions: “Have you ever chewed tobacco, smoked a 
pipe, smoked self-rolled cigarettes, or smoked cigarettes/
cigars?” or “Did you drink any alcoholic beverages, such 
as beer, wine, or liquor in the past year?”.

After overnight fasting, venous blood samples were 
collected from the subjects by professionals from the 
Chinese Center for Disease Control and Prevention; the 
blood samples were then sent to the Youanmen Center 
for Clinical Laboratory of Capital Medical University for 
measurement of biochemical parameters. It should be 
noted that total cholesterol (TC), TG, low-density lipo-
protein cholesterol (LDL-C), HDL-C, and plasma glu-
cose were measured using an enzymatic colorimetric 
test; Blood urea nitrogen (BUN) was measured using the 
enzymatic UV method with urease; Uric acid (UA) was 

measured using the UA Plus method; Serum creatinine 
(Cr) was measured using the Rate-blanked and compen-
sated Jaffe creatinine method; Glycated haemoglobin 
(HbA1c) was measured using the high-performance liq-
uid chromatography.

Exposure assessment
CMI was calculated as TG (mmol/L)/HDL-C (mmol/L) 
× WC (cm)/Height (cm) [15, 16]. CMI transition pat-
terns were categorized based on the median baseline 
CMI (CMI = 0.514), dividing the study population into 
two groups, and then classified into four patterns based 
on their CMI during follow-up: consistently-low, low-to-
high, high-to-low, and consistently-high.

The assessment of CumCMI was based on a widely 
used method for evaluating cumulative exposure [34–
37]. It was calculated as the mean of the CMI values 
measured during the longitudinal surveys divided by the 
total duration of exposure:  (CMI2012 +  CMI2015)/2 × time 
(2015 − 2012).

Fig. 1 Flow chart of study participants
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Outcome assessment
The study outcomes were the natural course of prediabe-
tes, specifically the trajectory of glycemic changes during 
the follow-up period, including progression to diabetes 
and regression to normoglycaemia. The diagnosis of dia-
betes, prediabetes, and normoglycaemia followed the cri-
teria of the American Diabetes Association (ADA) [38], 
detailed in Table 1.

Statistical analysis
We used Cox regression models with a 3-year follow-
up period as the time scale to evaluate the association 
between CMI and its changes with outcomes, calculating 
multivariable-adjusted hazard ratios (HRs) and corre-
sponding 95% confidence intervals. For the outcomes of 
the study, we employed a one-to-one approach to split the 
data into binary datasets for each class [39, 40]. The mul-
tivariable adjustment model adjusted for factors such as 
age, gender, education, CVD, stroke, hypertension, smok-
ing status, drinking status, height, systolic and diastolic 
blood pressure, LDL-C, HbA1c, UA, and Cr. Addition-
ally, we constructed restricted cubic splines regression 
model with four knots to assess the dose–response rela-
tionship between CMI/CumCMI and the natural course 
of prediabetes. When a potential non-linear relationship 
was detected, we further used a segmented regression 
recursive algorithm to calculate meaningful inflection 
points where the non-linear relationship changes [41].

We performed subgroup analyses based on gender 
(male/female), age (median: < 60/≥ 60 years), hyperten-
sion/CVD/stroke (yes/no), education (below primary/
middle school/high school and above), and marital sta-
tus (married/other) to detect any population-dependent 
effects of CMI and CumCMI on the natural course of 
prediabetes. Effect modification was tested by including 
interaction terms between the natural course of predia-
betes and potential effect modifiers in the final model.

All statistical analyses were conducted using R version 
4.2.1 and Empower(R) version 2.20. A two-sided P value 

< 0.05 was considered statistically significant. Baseline 
characteristics of the study population were compared 
using flexible methods and display formats according to 
the distribution and type of variables.

Results
Baseline characteristics
A total of 2,544 middle-aged and elderly prediabetic par-
ticipants were included in the analysis, with a mean age 
of 60 years. Overall, during a median follow-up period of 
3 years, 391 participants (15.37%) progressed to diabetes, 
and 575 participants (22.60%) regressed to normoglycae-
mia. Regarding CMI transition patterns, 275 participants 
were classified as low-to high, 949 as consistently-low, 
423 as high-to-low, and 897 as consistently-high. The 
rates of progression and regression of prediabetes in the 
consistently-low, low-to-high, high-to-low, and consist-
ently-high CMI pattern groups were as follows: 9.94% 
and 24.97%, 16.55% and 22.37%, 11.72% and 23.81%, and 
20.32% and 20.42%, respectively.

The baseline characteristics of the study population 
according to the natural course of prediabetes during fol-
low-up were summarized in Table 2. The results revealed 
that, compared to participants who remained in a predia-
betic state, those who progressed to diabetes were gener-
ally older, had higher weight, WC, WHtR, systolic blood 
pressure, TC, TG, glucose, HbA1c, CMI, and CumCMI 
(Fig.  2), and lower height, HDL-C, and LDL-C. Addi-
tionally, participants who progressed to diabetes were 
more likely to be female and had comorbid hypertension. 
Among participants who regressed to normoglycaemia, 
they were generally younger, more likely to be male, and 
had a significantly higher proportion of baseline non-
comorbid hypertension/CVD/stroke. Furthermore, those 
who regressed to normoglycaemia had significantly lower 
baseline WC, WHtR, TC, TG, LDL-C, glucose, HbA1c, 
CMI, and higher levels of HDL-C and height.

Association of CMI, CMI transition patterns, and CumCMI 
with the natural course of prediabetes in the entire 
population
Before conducting regression analysis, we calculated the 
variance inflation factor for CMI, CMI transition pat-
terns, CumCMI, and covariates to assess multicollinear-
ity among variables. Variables with a variance inflation 
factor > 5, indicating multicollinearity with other covari-
ates, were excluded from the subsequent multivariable 
adjustment models (see Supplementary Tables 1–3).

Four stepwise-adjusted Cox regression models were 
constructed to explore the association between CMI, 
CMI transition patterns, CumCMI, and the natural 
course of prediabetes. The results showed (Table 3) that 
in all models based on the entire population, CMI, CMI 

Table 1 Diagnose diabetes, prediabetes and normoglycaemia 
according to American Diabetes Association criteria

Abbreviations: HbA1c haemoglobin A1c, FPG fasting plasma glucose

For participants with random plasma glucose (RPG) measurements, RPG < 7.8 
mmol/L indicated normal glucose, while RPG > 11.1 mmol/L indicated diabetes

Normoglycaemia Prediabetes Diabetes

FPG  < 5.6 mmol/L 5.6–6.9 mmol/L  ≥ 7.0 mmol/L

HbA1c  < 5.7% 5.7–6.4%  ≥ 6.5%

Diagnosed 
with diabetes 
by another physi-
cian

Yes
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Table 2 Baseline characteristics summarized according to subjects’glycemic status during follow-up

Values were expressed as mean (standard deviation) or medians (quartile interval) or n (%)

Abbreviations: WC waist circumference, WHtR Waist-to-Height Ratio, SBP systolic blood pressure, DBP diastolic blood pressure, HbA1c haemoglobin A1c, HDL‐C high‐
density lipoprotein‐cholesterol, LDL‐C low‐density lipoprotein‐cholesterol, TC total cholesterol, TG triglycerides, UA uric acid, BUN blood urea nitrogen, Cr creatinine, 
CMI cardiometabolic index, CumCMI cumulative CMI, CVD cardiovascular disease

Glucose status during follow-up P-value

Prediabetes Diabetes Normoglycaemia

No. of subjects 1578 391 575

Age, years 59.64 (8.65) 60.54 (8.95) 58.23 (8.82)  < 0.001

Height, m 157.96 (8.63) 156.58 (8.05) 158.95 (8.37)  < 0.001

Weight, kg 59.11 (11.11) 61.70 (12.23) 59.41 (11.22)  < 0.001

WC, cm 84.92 (12.35) 88.29 (12.84) 83.95 (10.91)  < 0.001

WHtR 0.54 (0.08) 0.56 (0.08) 0.53 (0.07)  < 0.001

SBP, mmHg 131.11 (21.17) 132.84 (19.26) 128.95 (20.88) 0.015

DBP, mmHg 76.15 (11.92) 77.14 (11.78) 75.66 (11.84) 0.165

TC, mg/dL 200.30 (38.63) 200.69 (37.88) 190.57 (37.71)  < 0.001

TG, mg/dL 109.74 (77.88–160.85) 115.94 (84.96–182.31) 105.31 (75.22–155.76) 0.005

HDL-C, mg/dL 49.87 (40.98–60.70) 46.01 (37.50–57.80) 49.87 (40.59–61.08)  < 0.001

LDL-C, mg/dL 120.62 (98.58–143.43) 118.69 (99.36–144.20) 110.18 (89.01–133.18)  < 0.001

Glucose, mmol/L 108.08 (7.52) 110.96 (8.80) 107.60 (7.28)  < 0.001

HbA1c, % 5.25 (0.41) 5.40 (0.43) 5.05 (0.36)  < 0.001

Cr, mg/dL 0.76 (0.66–0.88) 0.73 (0.63–0.86) 0.77 (0.67–0.88) 0.075

UA, mg/dL 4.30 (3.61–5.17) 4.40 (3.67–5.28) 4.33 (3.63–5.14) 0.592

CMI 0.50 (0.30–0.89) 0.64 (0.34–1.13) 0.48 (0.29–0.86) 0.005

CumCMI 0.18 (0.12–0.30) 0.24 (0.16–0.39) 0.18 (0.11–0.29)  < 0.001

Gender  < 0.001

 Male 716 (45.37%) 152 (38.87%) 306 (53.22%)

 Female 862 (54.63%) 239 (61.13%) 269 (46.78%)

Smoking status 0.398

 Never 988 (62.61%) 253 (64.71%) 344 (59.83%)

 Current 460 (29.15%) 102 (26.09%) 173 (30.09%)

 Quit 130 (8.24%) 36 (9.21%) 58 (10.09%)

Drinking status 0.145

 Current 400 (25.35%) 79 (20.26%) 156 (27.23%)

 Never 1073 (68.00%) 282 (72.31%) 384 (67.02%)

 Quit 105 (6.65%) 29 (7.44%) 33 (5.76%)

Education, n (%) 0.053

 Below primary 784 (49.68%) 204 (52.17%) 252 (43.83%)

 Primary schools 344 (21.80%) 89 (22.76%) 133 (23.13%)

 Middle school 330 (20.91%) 65 (16.62%) 131 (22.78%)

 High school and above 120 (7.60%) 33 (8.44%) 59 (10.26%)

Marital status 0.895

 Married 1382 (87.58%) 339 (86.70%) 503 (87.48%)

 Other 196 (12.42%) 52 (13.30%) 72 (12.52%)

Hypertension  < 0.001

 No 921 (58.37%) 183 (46.80%) 346 (60.17%)

 Yes 657 (41.63%) 208 (53.20%) 229 (39.83%)

CVD 0.016

 Yes 193 (12.31%) 67 (17.40%) 66 (11.60%)

 No 1375 (87.69%) 318 (82.60%) 503 (88.40%)

Stroke  < 0.001

 Yes 28 (1.78%) 19 (4.91%) 8 (1.40%)

 No 1545 (98.22%) 368 (95.09%) 564 (98.60%)
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transition patterns, and CumCMI were significantly asso-
ciated with the progression of prediabetes to diabetes, 
but no statistically significant association was observed 

with prediabetes regression. Regarding prediabetes pro-
gression, in the unadjusted model, the HRs for the risk 
of diabetes associated with CMI and CumCMI were 1.14 

Fig. 2 Violin chart showing baseline characteristics of CMI and CumCMI according to glucose status during follow-up. CMI: cardiometabolic index; 
CumCMI: cumulative cardiometabolic index
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(1.05–1.24) and 2.24 (1.62–3.09), respectively. Compared 
to participants with a low-to-high CMI pattern, those 
with a consistently-low CMI pattern had a 40% reduced 
risk of developing diabetes, while no significant associa-
tions were observed in the consistently-high and high-
to-low CMI patterns. In the stepwise-adjusted models 
(Models I-III), the positive associations between CMI, 
CumCMI, and diabetes risk remained consistent, and 
the association between CMI transition patterns and 
diabetes progression was consistent with the unadjusted 
model.

Subgroup analysis
To further explore whether the association between CMI 
and CumCMI with the natural course of prediabetes var-
ies across different populations, we conducted the same 
analysis based on Model III in subgroups defined by 
gender, age, hypertension/CVD/stroke, education, and 
marital status, and tested for interaction effects to assess 
significant differences in this association across sub-
groups. The results showed (Table 4) that no significant 
interactions were observed in all subgroups regarding 
the progression of prediabetes. However, for prediabe-
tes regression, we observed a significant age-dependent 
association (P-interaction < 0.05). Specifically, we found a 

significant negative association between CMI and Cum-
CMI with prediabetes regression only in the elderly (age 
≥ 60), with HRs of 0.78 (0.62–0.99) and 0.32 (0.13–0.78), 
respectively. Overall, the association between CMI, 
CumCMI, and prediabetes regression was observed only 
in the elderly population.

Dose–response relationship between continuous variables 
CMI, CumCMI, and the natural course of prediabetes
Figures  3 and 4 show the dose–response relationship 
curves between CMI, CumCMI, and the natural course 
of prediabetes. A potential non-linear relationship was 
observed only in the association between CumCMI and 
diabetes progression. As shown in Fig. 4, the curve rep-
resenting the association between CumCMI and the risk 
of diabetes progression changed at approximately 0.4, 
where the slope decreased and tended to flatten. We used 
segmented Cox regression to calculate this inflection 
point, which was determined to be 0.37 (Table 5). Before 
CumCMI reached 0.37, each unit increase in CumCMI 
was associated with a 956% increase in the risk of dia-
betes progression (HR 10.56, 3.40–32.80). After Cum-
CMI exceeded 0.37, each unit increase in CumCMI was 
associated with only a 13% increase in the risk of diabetes 
progression (HR 1.13, 0.57–2.23).

Table 3 Cox regression analysis of the association between CMI, CMI transition patterns, CumCMI and the natural course of 
prediabetes

Abbreviations: HR hazard ratios, CI confidence interval, CMI cardiometabolic index, CumCMI cumulative CMI

Model I adjust for age, gender, smoking status, drinking status

Model II adjust for age, gender, education, CVD, stroke, hypertension, smoking status, drinking status

Model III adjust for age, gender, education, CVD, stroke, hypertension, smoking status, drinking status, height, SBP, DBP, LDL-C, HbA1c, UA, Cr

No. of case HR (95%CI)

Non-adjusted model Model I Model II Model III

Prediabetes to Diabetes

 CMI 1.14 (1.05, 1.24) 1.14 (1.05, 1.25) 1.13 (1.02, 1.24) 1.15 (1.03, 1.28)

CMI transition patterns

 Low-to-high 74 (16.55%) 1.0 1.0 1.0

 Consistently-low 82 (9.94%) 0.60 (0.44, 0.82) 0.60 (0.43, 0.82) 0.61 (0.45, 0.84) 0.63 (0.46, 0.86)

 High-to-low 32 (11.72%) 0.71 (0.47, 1.07) 0.72 (0.48, 1.10) 0.72 (0.47, 1.09) 0.70 (0.46, 1.06)

 Consistently-high 203 (20.32%) 1.23 (0.94, 1.60) 1.22 (0.94, 1.60) 1.15 (0.87, 1.50) 1.11 (0.83, 1.48)

 CumCMI 2.24 (1.62, 3.09) 2.28 (1.64, 3.17) 2.08 (1.47, 2.95) 2.27 (1.51, 3.41)

Prediabetes to normoglycaemia

 CMI 0.98 (0.89, 1.08) 0.97 (0.88, 1.07) 0.99 (0.89, 1.09) 0.93 (0.84, 1.04)

CMI transition patterns

 Low-to-high 100 (22.37%) 1.0 1.0 1.0

 Consistently-low 206 (24.97%) 1.12 (0.88, 1.42) 1.11 (0.87, 1.41) 1.12 (0.88, 1.44) 1.19 (0.92, 1.52)

 High-to-low 65 (23.81%) 1.06 (0.78, 1.45) 1.04 (0.76, 1.42) 1.07 (0.78, 1.47) 1.21 (0.87, 1.67)

 Consistently-high 204 (20.42%) 0.91 (0.72, 1.16) 0.90 (0.71, 1.14) 0.92 (0.72, 1.18) 0.97 (0.74, 1.26)

 CumCMI 0.80 (0.54, 1.18) 0.78 (0.52, 1.15) 0.82 (0.55, 1.22) 0.70 (0.46, 1.06)
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Discussion
In this prospective cohort study of middle-aged and 
elderly populations, our results suggest that assessing 
baseline CMI, CMI transition patterns during follow-
up, and CumCMI exposure holds significant value for 
diabetes risk assessment. Additionally, in the evaluation 
of prediabetes regression, CMI and CumCMI play an 
important role in populations aged 60 years and older.

With the global trend of aging [42], prediabetes is 
becoming increasingly common. However, it is impor-
tant to note that there is still no unified global standard 

for prediabetes, which poses a significant challenge for 
summarizing research related to prediabetes [1]. Cur-
rently, professional organizations such as the ADA, the 
World Health Organization, and the International Expert 
Committee have proposed several diagnostic criteria 
for prediabetes. Among them, the International Expert 
Committee and World Health Organization standards 
are more restrictive, while the ADA standard is the most 
inclusive [4]. In the current study, to ensure consistency 
in the results and discussion, we only included studies 
that defined prediabetes according to the ADA criteria. 

Table 4 Exploratory subgroup analysis of the role and differences of CMI, CumCMI in assessing changes in glycemic status in 
prediabetes patients

Abbreviations: HR hazard ratios, CI confidence interval, CMI cardiometabolic index, CumCMI cumulative CMI

Models adjusted for the same covariates as in model III (Table 3), except for the stratification variable

HR per 1 de/increase (95%CI)

CMI CumCMI

Prediabetes to 
normoglycaemia

Prediabetes to diabetes Prediabetes to 
normoglycaemia

Prediabetes to diabetes

Gneder

 Male 0.89 (0.76, 1.05) 1.19 (0.99, 1.43) 0.72 (0.41, 1.27) 2.71 (1.43, 5.14)

 Female 0.96 (0.84, 1.10) 1.13 (0.99, 1.29) 0.68 (0.38, 1.21) 2.06 (1.25, 3.40)

 P-interaction 0.4626 0.6584 0.8802 0.4952

Age, years

 45–59 0.98 (0.88, 1.10) 1.11 (0.96, 1.28) 0.91 (0.58, 1.44) 2.03 (1.19, 3.48)

  ≥ 60 0.78 (0.62, 0.99) 1.20 (1.02, 1.42) 0.32 (0.13, 0.78) 2.54 (1.42, 4.55)

 P-interaction 0.0213 0.4296 0.0318 0.5624

Education, n (%)

 Below primary 0.92 (0.78, 1.09) 1.20 (1.04, 1.39) 0.70 (0.36, 1.34) 2.66 (1.53, 4.61)

 primary schools 0.94 (0.78, 1.12) 1.09 (0.89, 1.33) 0.62 (0.29, 1.37) 1.73 (0.81, 3.71)

 middle school 1.05 (0.85, 1.29) 1.15 (0.87, 1.52) 1.20 (0.57, 2.51) 2.41 (0.92, 6.31)

 High school and above 0.80 (0.53, 1.19) 0.92 (0.57, 1.50) 0.38 (0.09, 1.53) 1.41 (0.34, 5.89)

 P-interaction 0.6121 0.6632 0.4307 0.7187

Marital status

 Married 0.95 (0.86, 1.06) 1.10 (0.97, 1.24) 0.75 (0.49, 1.15) 2.00 (1.29, 3.09)

 Other 0.86 (0.57, 1.30) 1.46 (1.12, 1.89) 0.55 (0.12, 2.48) 5.66 (1.93, 16.63)

 P-interaction 0.6468 0.0736 0.6808 0.0961

Hypertension

 No 0.95 (0.83, 1.08) 1.13 (0.97, 1.31) 0.72 (0.42, 1.24) 2.39 (1.38, 4.16)

 Yes 0.94 (0.79, 1.11) 1.15 (0.99, 1.34) 0.75 (0.41, 1.37) 2.04 (1.17, 3.56)

 P-interaction 0.9005 0.8770 0.9128 0.6786

Heart Problems

 Yes 1.18 (0.92, 1.52) 1.16 (0.89, 1.51) 1.29 (0.44, 3.78) 2.44 (1.02, 5.81)

 No 0.91 (0.81, 1.03) 1.14 (1.01, 1.28) 0.68 (0.44, 1.06) 2.16 (1.38, 3.38)

 P-interaction 0.2571 0.9026 0.2941 0.8028

Stroke

 Yes 0.85 (0.16, 4.57) 0.89 (0.52, 1.52) 0.22 (0.00, 194.17) 0.94 (0.18, 4.94)

 No 0.94 (0.85, 1.05) 1.15 (1.03, 1.29) 0.74 (0.49, 1.12) 2.34 (1.54, 3.55)

 P-interaction 0.9038 0.3199 0.7127 0.2624
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Epidemiologically, the prevalence of prediabetes in China 
is currently around 35.2%, with this figure approach-
ing 50% among adults over 50 years of age. This trend is 
similar to the global prevalence [3, 43, 44]. According to 
recent global meta-analyses, approximately 18% of indi-
viduals with prediabetes defined by the ADA criteria will 

progress to diabetes within five years [45, 46], and about 
31% will regress to normoglycaemia [47]. In our current 
analysis, based on nationally representative data from 
CHARLS, we observed a prediabetes regression rate of 
22.60% and a progression rate of 15.37% over a median 
follow-up of 3  years. Comparatively, the prediabetes 
progression rate in the CHARLS cohort is similar to 
global reports, while the regression rate is slightly lower 
than that reported in systematic reviews. This discrep-
ancy may be related to the design and population of the 
current study: unlike the randomized controlled trials 
included in systematic reviews [47], the CHARLS cohort 
is non-interventional, which has a significant impact on 
prediabetes regression. Secondly, the CHARLS cohort is 
a national survey of middle-aged and elderly populations 
(with a mean age of 60 years in the current analysis), 
which aligns with age-related impaired glucose metabo-
lism [2, 48].

Fig. 3 Visualizing the relationship between CMI and the natural course of prediabetes in the entire population using 4-knots RCS. CMI: 
cardiometabolic index; RCS: restricted cubic splines

Fig. 4 Visualizing the relationship between CumCMI and the natural course of prediabetes in the entire population using 4-knots RCS. CumCMI: 
cumulative cardiometabolic index; RCS: restricted cubic splines

Table 5 The result of the two-piecewise Cox regression model

Abbreviations: HR hazard ratios, CI confidence interval, CumCMI cumulative CMI

HR (95%CI) P-value

Fitting model by two-piecewise cox regression

 The inflection point of CumCMI 0.37

  < 0.37 10.56 (3.40, 32.80)  < 0.0001

  > 0.37 1.13 (0.57, 2.23) 0.7351

 P for log likelihood ratio test 0.004
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In the current study, our analysis of CMI further con-
firmed previous findings that high CMI is significantly 
positively associated with diabetes [15, 29–31, 49]. It is 
noteworthy that in a recent study by Qiu et al. [49], they 
employed a particularly clever: they used restricted cubic 
splines analysis results (linear association) to set a CMI 
cutoff value of 0.467 to distinguish between low and high 
CMI and further classified CMI transition patterns into 
four categories: consistently-low, low-to-high, high-to-
low, and consistently-high. Their findings indicated that 
compared to participants with a consistently-low CMI 
pattern, those with low-to-high, high-to-low, and con-
sistently-high CMI patterns had a significantly increased 
risk of diabetes. In the current study, we also evaluated 
the impact of CMI transition patterns during follow-up 
on the progression to diabetes. Unlike Qiu et al.’s design 
[49], we used the median baseline CMI (CMI = 0.514) 
to dichotomize the study population and then evaluated 
their transition patterns during follow-up in relation to 
prediabetes progression. Our analysis results were simi-
lar to those of Qiu et al. [49], suggesting that maintain-
ing a low CMI level is ideal for reducing diabetes risk. 
Compared to Qiu et al. and previous similar studies [15, 
29–31, 49], our study included a different participant 
population, providing evidence for using CMI to assess 
future diabetes risk in prediabetic patients. Moreover, 
our study further evaluated the impact of baseline CMI 
and CMI transition patterns during follow-up on pre-
diabetes regression. Unfortunately, despite the statistical 
data on incidence rates showing that the proportions of 
participants regressing to normoglycaemia were lowest 
and highest in the consistently-high and consistently-low 
CMI pattern groups, respectively (low-to-high 22.37%, 
consistently-low 24.97%, high-to-low 23.81%, consist-
ently-high 20.42%), no statistically significant associa-
tions were observed in further analyses. Further research 
is needed to validate these findings.

After completing the analysis of CMI transition pat-
terns on the natural course of prediabetes, we engaged in 
some deeper reflections. From the data analysis perspec-
tive, the advantage of evaluating CMI transition patterns 
during follow-up is that it provides direct evidence for 
identifying relatively low-risk groups, such as the consist-
ently-low CMI group. However, one concern is that the 
setting of the CMI cutoff value may significantly impact 
the study results, especially for slight changes near the 
cutoff value during follow-up. This is a limitation that is 
difficult to avoid when converting continuous variables 
into categorical ones [50, 51], even in high-quality rand-
omized controlled trials. For example, even when LDL-C 
levels are controlled below normal in coronary heart dis-
ease patients after treatment, they still face a high residual 

risk of events [52, 53]. To address this issue, researchers 
have proposed a new approach to evaluating cumulative 
exposure to independent variables over time (e.g., long-
term high-concentration LDL-C exposure exacerbates 
atherosclerosis) [54]. In the current study, we adopted a 
widely used method for evaluating cumulative exposure 
[34–37] and assessed the association between cumula-
tive CMI exposure during follow-up and the progres-
sion and regression of prediabetes. Our further analysis 
results showed that CumCMI was positively associated 
with the future risk of diabetes in prediabetic patients 
and negatively associated with prediabetes regression 
in those aged ≥ 60 years. The analysis results indicate 
that compared to baseline CMI, CumCMI has a much-
improved ability to assess the progression and regression 
of prediabetes [Prediabetes to diabetes (HR): CMI 1.15 
vs CumCMI 2.27; Prediabetes to normoglycaemia (age 
≥ 60, HR): CMI 0.78 vs CumCMI 0.32]. In simple terms, 
the longer and higher the CMI exposure, the more likely 
diabetes events are to occur, and it hinders prediabetes 
regression in the elderly. These findings further suggest 
that monitoring and maintaining appropriate CMI levels 
may help prevent glucose deterioration.

The reason why the association between CMI, Cum-
CMI, and prediabetes regression was only observed in 
the elderly population remains unclear. However, based 
on the stratified analysis results, the association between 
CMI, CumCMI, and diabetes progression also appears to 
be relatively stronger in the elderly population. Although 
further interaction analysis did not detect significant 
differences in age subgroups, this does not affect our 
observation of this trend. Based on the results of the age 
subgroup, we speculate that CMI and CumCMI may have 
age-related high sensitivity in assessing glucose metabo-
lism. We found some corroboration from completed 
studies related to CMI. For example, in a recent study by 
Wu et al. [32], they noted a significantly higher correla-
tion between CMI and insulin resistance in people aged 
60 years and older. Similar results have been reported 
for cardiometabolic diseases [16]. Additionally, regard-
ing diabetes progression, Song et al., supported by a large 
sample (n = 21,304), found that the risk of glucose dete-
rioration was significantly higher in those aged 60 years 
and older (P-interaction < 0.01) [29]. Besides these exam-
ples, similar age-specific findings have also been reported 
in the evaluation of metabolic syndrome [21] and chronic 
kidney disease [25]. Based on the findings from the above 
CMI-related studies and the results of the current study, 
we believe that CMI may be a good risk identification 
factor for metabolic diseases, particularly for age-related 
glucose metabolism disorders.
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Strengths and limitations
The strengths of the current study stem from the pro-
spective design and dynamic monitoring of the CHARLS 
cohort, which allowed us to evaluate the impact of CMI 
and its longitudinal changes on the natural course of 
prediabetes. The analysis of CMI transition patterns and 
cumulative exposure not only greatly enhanced the inno-
vation of the current study but also provided valuable 
evidence for future research in this field.

Several limitations of the current study should be 
noted: (1) The diagnosis of prediabetes: The oral glucose 
tolerance test was not included in the CHARLS cohort 
survey items, which may lead to the omission of some 
individuals with impaired glucose tolerance [4]. (2) The 
CHARLS cohort is a survey study targeting middle-aged 
and elderly Chinese populations, so caution should be 
exercised when extrapolating the findings to the gen-
eral population [55, 56]. (3) While the use of large study 
populations can minimize sampling bias and better 
represent real-world practice, some participants were 
excluded from the current analysis because they did not 
have blood glucose measurements, which may introduce 
some sampling bias. (4) The CHARLS cohort is a non-
interventional observational study, so it is not possible 
to determine the impact of interventions on cumulative 
CMI exposure. (5) As with all observational studies, our 
study is subject to residual confounding [57], as the rela-
tive size of the study sample makes it impossible to fully 
account for a wide range of covariates.

Conclusion
In this prospective cohort study of middle-aged and 
elderly populations, we found that longitudinal changes 
in CMI were associated with the progression and regres-
sion of prediabetes. High CumCMI exposure during fol-
low-up significantly increased the risk of diabetes events 
and hindered the recovery of normoglycaemia in older 
adults. Furthermore, maintaining a low CMI pattern dur-
ing follow-up can significantly reduce the risk of diabetes 
in prediabetic patients.
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