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Abstract
Background Previous research has suggested a potential link between urolithiasis and lipid species levels. A 
Mendelian randomization (MR) study was conducted to investigate whether a causal relationship exists between 
genetic susceptibility to plasma lipids and the risk of urolithiasis.

Methods Data on lipid species were collected from genome-wide association (GWAS) analyses of plasma lipidomes. 
For the initial analysis, GWAS data on urolithiasis were extracted using the GWAS ID ebi-a-GCST90018935. The inverse 
variance weighted (IVW) approach was utilized as the main method for MR analysis. Multivariable MR, multiple 
supplementary analyses, and comprehensive sensitivity analyses were also conducted. Additional independent 
datasets were utilized for replication analysis and meta-analysis.

Results Findings from the IVW method, repeated analyses, and meta-analysis revealed six significant causal 
effects of lipid species on urolithiasis. The specific lipid species identified were: phosphatidylcholine (PC; 16:1_20:4) 
levels [OR: 0.92; 95%CI: 0.87, 0.96; P = 6 × 10− 4], PC (16:0_20:4) levels [OR: 0.94; 95%CI: 0.90, 0.98; P = 0.0017], 
phosphatidylethanolamine (PE; 18:2_0:0) levels [OR: 1.10; 95%CI: 1.04, 1.15; P = 4 × 10− 4], PE (16:0_20:4) levels [OR: 1.05; 
95%CI: 1.01, 1.09; P = 0.0028], PE (18:1_18:1) levels [OR: 1.06; 95%CI: 1.01, 1.11; P = 0.0136], and sterol ester (SE; 27:1/20:4) 
levels [OR: 0.93; 95%CI: 0.89, 0.96; P = 1.5 × 10− 4].

Conclusion The MR study proposes a potential causal link between six plasma lipids and urolithiasis. Particularly, 
SEs (27:1/20:4), PC (16:0_20:4), and PC (16:1_20:4) may serve as potential inhibitors of calcium-containing urolithiasis 
growth. The integration of genomics and lipidomics in MR analysis holds promise for early screening, prevention, and 
treatment of urinary tract stones.
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Introduction
Urolithiasis is a common disease worldwide, affecting 
people of all ages [1]. Urinary stones are formed due to 
the accumulation of inorganic and organic substances 
in the renal parenchyma [2]. Approximately 10% of the 
world’s population suffers from urinary stone disease [3]. 
Of note, the incidence of urolithiasis is on the rise, and 
the recurrence rate is alarmingly high, with studies show-
ing a 10-year recurrence rate of up to 50%. Data from the 
National Health and Nutrition Examination Survey in the 
United States showed that the self-reported prevalence of 
urolithiasis increased from 3.2% between 1976 and 1980 
to 8.8% in 2014 [3]. The occurrence of urolithiasis is asso-
ciated with a variety of factors, including dietary habits, 
genetic factors, and chronic kidney disease.

The etiology of urinary stones is very complex, involv-
ing metabolic disorders, atypical anatomical structures, 
infections and other factors. Recent studies have shown 
that abnormal lipid metabolism is closely related to stone 
formation [4]. Eric N’s team found that the formation of 
urinary stones is closely related to metabolic syndrome 
(MetS) in the body, including abnormal lipid metabolism, 
hyperglycemia, hypertension, obesity and insulin resis-
tance [4].

The global rise in kidney stone prevalence has paral-
leled an epidemic of metabolic disorders, suggesting 
a potential pathophysiological link between the two. 
Metabolic syndrome, characterized by obesity, insulin 
resistance, dyslipidemia, and hypertension, has emerged 
as an important risk factor for kidney stones. Emerging 
evidence suggests that comorbidities associated with 
metabolic syndrome, such as polycystic ovary syndrome 
(PCOS), obesity, and cardiovascular disease, may jointly 
contribute to stone formation through common mecha-
nisms, including chronic inflammation, oxidative stress, 
and altered urine biochemistry.

Obesity is a hallmark of MetS and is closely associated 
with hypercalciuria and hypocitraturia, both of which 
are major risk factors for calcium oxalate stone forma-
tion. Adipose tissue-derived inflammatory cytokines 
(e.g., TNF-α, IL-6) may further impair tubular function 
and exacerbate urolithiasis [5]. Similarly, insulin resis-
tance in MetS drives urine acidification through impaired 
ammonia production, favoring uric acid crystallization 
[6]. Notably, PCOS, a condition intertwined with insulin 
resistance and hyperandrogenism, is associated with a 
1.5-fold increased risk of kidney stones in women, which 
may be mediated by androgen-driven hyperoxaluria and 
metabolic dysregulation [7].

Cardiovascular comorbidity is another aspect of MetS 
that may indirectly increase stone risk. Hypertension 
and endothelial dysfunction reduce renal blood flow and 
enhance tubular reabsorption of calcium and sodium—
a pathway that has been confirmed in cohort studies 

showing that hypertensive patients have a higher rate of 
stone recurrence [8]. In addition, dyslipidemia in MetS 
increases urinary oxalate excretion through a peroxisome 
proliferator-activated receptor (PPAR)-mediated path-
way, as shown in a mouse model [9].

Despite these associations, the synergistic effects of 
MetS components on stone pathogenesis remain under-
explored. This study aimed to elucidate the combined 
effects of metabolic disturbances on the characteristics 
of urinary stone formation and provide insights into 
personalized prevention strategies. In addition, lipid 
metabolism disturbances have been reported to be an 
independent risk factor for urinary stones [10].

Metabolic syndrome and obesity are significant risk 
factors for the development of urinary stones [11]. 
Patients with these conditions often present with dyslip-
idemia [12]. Measuring plasma lipid levels through lipo-
protein assessment is a standard clinical method [13]. 
Recent advancements in plasma lipidomics analysis have 
greatly enhanced the specificity and accuracy of lipid 
measurements [14]. Medical researchers have made sub-
stantial progress in understanding lipid metabolism and 
its relationship with cardiovascular diseases by uncover-
ing the genetic architecture of the plasma lipidome. In 
recent years, the rapid development of plasma lipidomics 
has significantly extended our comprehension of plasma 
lipids [15], offering better opportunities to investigate 
the relationships and underlying mechanisms between 
plasma lipids and various diseases.

Plasma lipids are typically classified based on their 
chemical structure into sterol esters (SEs), ceramides, 
diacylglycerols, lysophosphatidylcholine, phosphatidyl-
choline (PC), PC ether, phosphatidylethanolamine (PE) 
ether, sphingomyelin, and triacylglycerol [14, 16, 17]. A 
study of the Korean population found that patients with 
kidney stones tend to have higher triglyceride levels and 
lower cholesterol levels [18]. Another cross-sectional 
study indicated that a higher triglyceride-glucose index 
increases the incidence of kidney stones through insu-
lin resistance [19]. Furthermore, several studies have 
reported that dyslipidemia contributes to an increased 
risk of nephrolithiasis [20, 21]. However, observational 
studies such as these generally provide unreliable esti-
mates of causal relationships [22].

Additionally, confounding factors (i.e., variables that 
influence both the exposure and the outcome) along with 
other forms of bias, can lead to misleading conclusions in 
observational epidemiology. Previous research has dem-
onstrated a negative correlation between statin drug use 
and the incidence of urolithiasis [23]. However, this study 
is limited as it does not address lipid levels [23].

The findings from prior observational studies are 
inconsistent, with small sample sizes, varying study pop-
ulations, and designs that have not been conducted under 
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standardized conditions. These limitations highlight the 
need for further data integration through systematic, 
well-designed studies to confirm the potential causal 
relationship between genetic susceptibility to plasma lip-
ids and the risk of urolithiasis.

To address the methodological limitations in previous 
investigations, an innovative analytical framework was 
developed that integrates two-sample MR (TSMR) with 
meta-analytic methodologies. This approach enables a 
systematic examination of causal associations between 
specific lipid classes and the pathogenesis of urolithiasis.

As a widely used epidemiological method for instru-
mental variable (IV) analysis, MR employs single nucle-
otide polymorphisms (SNPs) related with both the 
exposure and the outcome as IVs to evaluate the causal 
relation between the two [24]. MR analysis overcomes 
the observational studies’ limitations by reliably estimat-
ing causal relationships. Genetic variants are typically 
not influenced by the outcome and, therefore, are not 
subject to reverse causation. Since genetic variation is 
unaffected by the outcome or confounders, MR methods 
can address concealed confounding effects and reverse 
causality in the relationship between outcome and expo-
sure. TSMR allows for the examination of instrument-
exposure and instrument-outcome relationships using 
two independent samples, thereby enhancing the efficacy 
of the analysis [25]. In this study, extensive published 
data was gathered from large genetic studies to examine 
whether there is a causal relation between plasma lipid 
levels and urolithiasis risk utilizing TSMR analysis.

Materials and methods
Data sources and study design
In the current study, SNPs associated with plasma lipids 
were selected from genome-wide association (GWAS) 
analyses of plasma lipidomes conducted in 2023 [26]. 
These analyses found new lipid-associated variants and 
revealed 495 genome-trait associations across 56 genetic 
loci, such as 8 novel loci, with a significant contribution 
from the multivariate analysis [26]. The study included 
179 lipid species from 7,174 Finnish individuals, includ-
ing 377,277 FinnGen participants [26]. Notably, this 
report identified 495 genome-wide associations across 56 
genetic loci and revealed associations with 40 lipid loci 
for 953 disease endpoints in a comprehensive GWAS 
analysis. The study also established reliable genetic links 
between lipid species and various diseases. For the out-
come datasets, SNPs related to urolithiasis were found 
from the IEU OPEN GWAS PROJECT, with the GWAS 
ID ebi-a-GCST90018935, comprising 6,223 cases and 
482,123 controls [27]. Urolithiasis diagnosis in the inpa-
tient registry was defined as the presence of stones within 
the urinary tract, with reported traits including: ICD10 
N20, N21 (kidney stones with CNV U-shape model); 

ICD10 N20, N21 (kidney stones with CNV deletion-only 
model); ICD10 N20, N21 (kidney stones with CNV dupli-
cation-only model); ICD10 N20, N21 (kidney stones with 
CNV mirror model); ICD10 N20 (kidney, ureter, or blad-
der stones); ICD10 N20 (kidney, ureter, or bladder stones 
with Gene-based burden); and other variations of kidney, 
ureter, or bladder stones, as well as urolithiasis. All par-
ticipants in both the outcome and exposure datasets were 
of European ancestry.

3 key assumptions underlie MR analysis: (a) The cho-
sen SNPs must be strongly related to the exposure [28]. 
The evaluation of the instrument–exposure association 
strength was conducted using the F-statistic [29]. The 
formula for F is given by R²(n - k − 1) / [k(1 - R²)], where 
R² denotes the chosen SNPs’ cumulative explained vari-
ance on circulating lipid levels, k is the number of chosen 
SNPs, and n is the sample size. If the F-statistic was > 10, 
this indicated no bias due to weak SNPs; (b) The included 
genetic variants should be related with the risk of the 
outcome only through the exposure, but not through 
confounding factors [30]. MR‒Egger regression was uti-
lized to identify any horizontal pleiotropy between the 
genetic variant and the outcome; (c) The SNPs should 
be independent of confounders. Figure  1 overviews the 
study design.

Selection of instrumental genetic variables
To extract additional IVs, all genetic variants related with 
plasma lipids (P < 1 × 10− 5) were considered as IVs [31]. 
Two thresholds, R² and F-statistics, were utilized to select 
the IVs in order to mitigate potential biases from strong 
linkage disequilibrium (LD) [29]. For the selected SNPs, 
F-statistics and R² were employed to assess the strength 
of the IVs and minimize weak-tool bias. The most recent 
and rigorous calculation method was applied, where the 
F-statistic formula is given by R²(n - k − 1) / [k(1 - R²)] 
[32]. Where, R² denotes the cumulative explained vari-
ance of the chosen SNPs on circulating lipid levels, k 
denotes the number of chosen SNPs, and n represents 
the sample size. If the F-statistic was > 10, this indicated 
no bias from weak SNPs [33].

The SNPs related to plasma lipids were required to 
meet the criteria of R² < 0.001 and to be located at least 
10,000  kb apart from each other. To exclude potential 
pleiotropic effects, a thorough search was conducted 
for potentially related traits (secondary phenotypes) 
related with every SNP utilizing the LDtrait Tool from 
the GWAS Catalog ( h t t p  s : /  / l d l  i n  k . n  i h .  g o v /  ? t  a b = h o m 
e) up to March 2024 [34, 35]. This was done to evaluate 
whether the IVs were related to common confounders 
of urolithiasis. A P-value less than 1 × 10− 5 was consid-
ered indicative of no confounding factors. After remov-
ing SNPs corresponding to phenotypes related to the 
outcomes, the remaining SNPs were retained and MR 

https://ldlink.nih.gov/?tab=home
https://ldlink.nih.gov/?tab=home
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analysis was reconducted to verify the results’ reliabil-
ity. In the reverse MR analysis, independent SNPs with 
genome-wide significance (P < 1 × 10–5, R² < 0.001, and 
distance > 10,000 kb) were chosen as IVs for urolithiasis.

Statistical analysis and sensitivity analysis
The TSMR method effectively addresses the issue of 
sample overlap. TSMR analysis was performed to assess 
the causal relation between genetic susceptibility to 
lipid levels and urolithiasis risk. The assessments were 
carried out using standard MR methods, including the 
IVW, MR-Egger regression, weighted median (WMn), 
and weighted mode (WM). The estimates from the IVW 
method are derived from a summary analysis of the Wald 
ratios for all genetic variants, providing the accurate valu-
ation of causal effects under the assumption that all SNPs 
are independently valid [25]. Thus, IVW was adopted as 
the main MR method for causal inference, as it needs all 
chosen SNPs to be valid IVs. The IVW method assumes 
that all IVs jointly impact the outcome via the exposure 
[36]. In contrast, weighted median, MR-Egger regression, 
and WM were utilized as supplementary analyses.

Sensitivity analysis is crucial for verifying the certainty 
and stability of causal effects, as well as for examin-
ing heterogeneity and horizontal pleiotropy. MR-Egger 
regression was employed to assess bias from horizontal 
pleiotropic effects and invalid IVs among the included 
SNPs [37]. MR-Egger regression, weighted median, and 
WM can provide more reliable causal estimates even in 

the invalid SNPs’ presence [30, 37, 38]. Under a moder-
ately loose condition (P < 1 × 10− 5), these three methods 
ensure more robust estimates. MR-Egger regression gen-
erates an intercept that indicates horizontal pleiotropy 
(where IVs impact the outcome via channels other than 
the exposure), offering more reliable estimates even when 
some IVs may be invalid [37]. The WMn method uses an 
inverse-variance weighted ratio to estimate the median 
[30, 39]. Compared to IVW and MR-Egger, this approach 
is more robust to outliers, providing consistent estimates 
when at least 50% of the weights come from genetic vari-
ations of valid instruments [30]. The WM method, which 
also uses an inverse-variance weighted ratio to estimate 
the mode [38, 39], is stronger than MR-Egger but inferior 
to IVW and the WMn method [38], providing consistent 
estimates when the largest weight comes from effective 
genetic variations [38].

The MR-PRESSO method automatically detects outli-
ers in IVW linear regression and removes them to correct 
MR estimation [40]. Radial MR [41] was conducted to 
identify abnormal outliers, and MR analysis was repeated 
after removing heterogeneous SNPs. Outliers were also 
removed using the radial MR and global test of MR-
PRESSO [40, 41]. The aggregated exposure and outcome 
datasets were harmonized to ensure consistency in alleles 
for each SNP between plasma lipids and urolithiasis 
risk. Heterogeneity among estimates from each SNP was 
evaluated using Cochran’s Q statistic [31]. A leave-one-
out sensitivity analysis was conducted by sequentially 

Fig. 1 A flowchart illustrating the study design process of Mendelian randomization. (a) The selected SNPs must be strongly related to the exposure; 
(b) The included genetic variant must be associated with the risk of the outcome solely through the exposure, not by confounding factors; (c) The SNPs 
should be independent of confounders. IVW: Inverse-variance weighted; WMn: Weighted median; WM: Weighted mode; LOO analysis: Leave-one-out 
sensitivity analysis
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removing each SNP and applying the IVW method to the 
remaining SNPs [42]. This analysis assessed the stability 
of effect sizes and identified specific SNPs that dispro-
portionately influenced the association.

Additionally, the threshold for estimates (P < 0.05) was 
adjusted based on the number of exposures using the 
Bonferroni correction to reduce the false positive rate 
in multiple comparisons. The significance level for each 
comparison was calculated using the Bonferroni for-
mula: α = 2.8 × 10⁻⁴ (0.05/179). For each comparison, this 
adjusted significance level (P < 2.8 × 10⁻⁴) was applied to 
determine the results’ significance.

All statistical analyses were conducted utilizing the 
“TwoSampleMR,” “MR-PRESSO,” and “Radial MR” 
packages in R software, Version 4.2.1. Unless otherwise 
stated, statistical significance was set at a two-sided 
P-value < 0.05.

Replication and meta-analysis
The majority of participants in current genetic studies 
are of European descent. To investigate whether the MR 
results are applicable to a broader range of populations, a 
GWAS dataset was selected from East Asian populations 
for further validation, thereby strengthening the stability 
and accuracy of the existing estimates. The IVW analy-
sis was replicated in an additional urolithiasis cohort that 
included 6,638 East Asian cases and 205,815 East Asian 
ancestry controls [43]. The urolithiasis dataset for the 
replication analysis was also got from the GWAS Cata-
log. Additionally, a meta-analysis, combining this dataset 
with the existing study on plasma lipids, was performed 
to provide complementary results. Specifically, data with 
GWAS ID ebi-a-GCST90018935 was used in the pre-
liminary analysis, while for the replication analysis, the 
dataset with GWAS ID bbj-a-155 was utilized. The data 
were analyzed utilizing Review Manager software (ver-
sion 5.4).

Multivariable mendelian randomization analysis
Multivariable MR (MVMR) allows for the comparison 
of interactions among multiple exposures, adjusting for 
genetic interactions between exposures and ensuring that 
genetic variation is associated with a single risk factor 
[44]. MVMR can independently assess the direct impact 
of each exposure on outcomes. MVMR was conducted 
on the identified lipid species to adjust for their interac-
tions utilizing the IVW and MR-PRESSO approaches. In 
multivariable MR, the IVW method regresses all SNPs 
associated with exposures against outcomes, weighting 
them by the inverse variance of the outcomes [45]. MR-
PRESSO can eliminate outliers to correct for IV pleiot-
ropy [46].

Results
Initial analysis
Qualified IVs were first identified from a correlated lipi-
domics dataset based on both univariate and multivari-
ate genome-wide analyses (P < 1 × 10− 5). The clumped IVs 
contained SNPs ranging from 13 to 34. Specifically, the 
genetically proxied PC (O-16:2_18:0) levels had the least 
number of SNPs (13), while triacylglycerol (53:4) lev-
els had the most (34). When the F-statistic was greater 
than 10, the correlation was considered free from bias 
due to weak SNPs. After harmonization, the outcome 
data extracted via IVs were ultimately included in the MR 
analysis (Table S1).

To minimize the influence of horizontal pleiotropy, 
Radial plots and Radial regression were used to exclude 
unqualified SNPs, presenting detailed information on 
outliers in Table S2. The screened plasma lipidomes were 
then categorized into three groups based on chemical 
structure attributes: glycerolipids, glycerophospholipids, 
and sterol lipids. Using the IVW approach, underlying 
causal relationships between 27 plasma lipids were ini-
tially identified across these three categories and uroli-
thiasis (Figs. 2 and 3).

Further screening of the initially identified plasma lip-
ids was conducted through sensitivity analysis, horizontal 
pleiotropy analysis, and supplementary analysis. Ulti-
mately, 21 types of plasma lipids met the screening crite-
ria (Table S3). The direction and magnitude of MR-Egger, 
WMn, and WM estimates were consistent with the IVW 
estimates (Figure S1). Subsequently, outliers identified in 
the global test of MR-PRESSO were removed. The reanal-
ysis revealed no evidence of horizontal pleiotropy (Table 
S4). The results from the leave-one-out analysis corrobo-
rated that the presence of a single SNP did not introduce 
bias into the MR estimation (Figure S2).

All P-values for the IVW Cochran’s Q statistics and 
MR-Egger intercept test exceeded 0.05, indicating no het-
erogeneity or pleiotropy among the SNPs (Table S3). The 
remaining 21 plasma lipids were considered as candidates 
for further analysis. Bonferroni-corrected results identi-
fied three lipid species with causal effects associated with 
urolithiasis: PC (16:1_18:0) levels (OR: 1.14; 95%CI: 1.07, 
1.22; P_IVW = 1 × 10− 4), PC (18:0_20:4) levels (OR: 0.93; 
95%CI: 0.90, 0.96; P_IVW = 1.9 × 10− 5), and SE (27:1/20:4) 
levels (OR: 0.93; 95%CI: 0.89, 0.96; P_IVW = 1.5 × 10− 4) 
(Tables S5–S7). The Cochran’s Q test and MR-Egger 
intercept test strongly suggested no heterogeneity or plei-
otropy among the three lipid species (Table 1). Notably, 
in the complementary analyses of SE (27:1/20:4), con-
sistent results were observed in the WMn analysis (OR: 
0.932, 95%CI: 0.901–0.965, P = 8.0 × 10− 5), MR-Egger 
analysis (OR: 0.946, 95%CI: 0.900–0.994, P = 0.036), and 
WM (OR: 0.930, 95%CI: 0.898–0.963, P = 2.9 × 10− 4) 
(Table  1). Therefore, after rigorous screening, sufficient 
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evidence suggest that SE (27:1/20:4) is associated with a 
lower risk of urolithiasis.

Additional validation and meta-analysis
To enhance the stability and accuracy of the existing esti-
mates, an additional dataset was selected from the GWAS 
for further validation. Following the MR analysis con-
ducted on individuals of European descent, the results 
were replicated using East Asian populations. The IVW 
analysis of the East Asian dataset revealed a similar trend 
to the original findings. Among the 21 preliminarily iden-
tified lipid species, six plasma lipids exhibited consistent 
patterns. Specifically, the levels of SE (27:1/20:4) [OR: 

0.926; 95%CI: 0.893, 0.960; P = 2.6 × 10− 5], PC (16:0_20:4) 
[OR: 0.934; 95%CI: 0.897, 0.972; P = 8.13 × 10− 4], 
and PC (16:1_20:4) [OR: 0.911; 95%CI: 0.872, 0.951; 
P = 2.22 × 10− 5] were associated with a decreased genetic 
susceptibility to urinary stones in both the replicated and 
meta-analysis results.

On the other hand, the levels of PE (18:2_0:0) [OR: 
1.105; 95%CI: 1.058, 1.154; P = 6 × 10− 6], PE (16:0_20:4) 
[OR: 1.052; 95%CI: 1.022, 1.083; P = 6.17 × 10− 4], and PE 
(18:1_18:1) [OR: 1.095; 95%CI: 1.012, 1.184; P = 0.0232] 
were positively associated with the risk of urolithiasis. 
The direction of these associations was consistent across 
both analyses. Furthermore, the meta-analysis confirmed 

Fig. 2 Mendelian randomization IVW estimates of plasma lipids on the risk for urolithiasis. An asterisk (*) indicates the lipid species that has reached the 
significant threshold of Bonferroni correction(P < 2.8 × 10− 4). IVW: Inverse variance weighted; OR, odds ratio; SNP: single nucleotide polymorphism. CI: 
confidence interval
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that these plasma lipids can influence the risk of urolithi-
asis (Fig. 4).

Confounding analysis and evaluation of genetic 
directionality
After excluding SNPs that did not meet the estimated 
values during sensitivity analysis, further assessment 

was conducted to determine whether all SNPs associated 
with the six plasma lipids were independent of common 
confounding factors. It was found that only the levels 
of PC (16:0_20:4) and PE (18:2_0:0) were unaffected by 
these confounders. For the other four plasma lipids, four 
confounding factors were identified: vitamin D measure-
ment, metabolic syndrome, dietary measurement, and 

Table 1 Causality from plasma lipid on kidney stones via supplementary and sensitivity analysis. Abbreviations: CI, confidence interval; 
ME, MR-Egger; N: number of single nucleotide polymorphisms; OR: odds ratio; WMn: Weighted median; WM: Weighted mode
Plasma Lipid N MR analysis Pleiotropy Heterogeneity

Methods OR(95% CI) p Intercept p Q p
Phosphatidylcholine (16:1_18:0) levels 18 ME 1.100(0.955–1.267) 0.205 0.006 0.573 13.389 0.710

WMn 1.133(1.014–1.267) 0.028
WM 1.134(1.019–1.261) 0.034

Phosphatidylcholine (18:0_20:4) levels 25 ME 0.935(0.891–0.982) 0.013 -0.002 0.706 32.152 0.123
WMn 0.935(0.904–0.966) 7.1 × 10− 5

WM 0.934(0.903–0.966) 0.001
Sterol ester (27:1/20:4) levels 30 ME 0.946(0.900-0.994) 0.036 -0.007 0.261 41.839 0.058

WMn 0.932(0.901–0.965) 0.000
WM 0.930(0.898–0.963) 0.000

Fig. 3 The volcano plot demonstrates the association between 179 plasma lipid levels and urolithiasis risk. The X-axis represents the beta-value, and the 
Y-axis represents the logarithmic p-value with a base of 10. P < 0.05 is regarded as the statistically significant threshold. Green points represent the protec-
tive lipids species for urolithiasis, and red points represent risk
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type 2 diabetes mellitus (Table S8). This exclusion process 
was carried out using the LDtrait Tool retrieved from the 
GWAS Catalog.

After removing the confounding SNPs, the reanalysis 
still showed significant results as follows: SE (27:1/20:4) 
levels [OR: 0.926; 95%CI: 0.893, 0.961; P = 4.66 × 10− 5]; 
PE (16:0_20:4) levels [OR: 1.086; 95%CI: 1.022, 1.154; 

P = 0.0077]; PE (18:1_18:1) levels [OR: 1.060; 95%CI: 
1.006, 1.116; P = 0.0297]; and PC (16:1_20:4) levels [OR: 
0.903; 95%CI: 0.860, 0.949; P = 5.69 × 10− 5]. Additionally, 
the Steiger test indicated no reverse causal relationship 
between the genetically proxied IVs (Table S9).

Fig. 4 Meta-analysis of significantly associated (IVW derived P < 0.05) between plasma lipids and urolithiasis. A represents sterol ester (27:1/20:4) lev-
els; B represents phosphatidylethanolamine (18:2_0:0) levels; C represents phosphatidylcholine (16:0_20:4) levels; D represents phosphatidylcholine 
(16:1_20:4) levels; E represents phosphatidylethanolamine (16:0_20:4) levels; F represents phosphatidylethanolamine (18:1_18:1) levels. OR, odds ratio. 
CI: confidence interval
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Bidirectional mendelian randomization analyses
Reverse MR analyses were performed to confirm the 
robustness of the findings. This reverse analysis tested the 
causal effects of urolithiasis on the 21 lipid species identi-
fied in both the initial and complementary analyses. The 
filtered IVs included SNPs ranging from 34 to 50, with PE 
(16:0_20:4) levels being genetically proxied by the few-
est SNPs (34) and SE (27:1/20:4) levels by the most (50 
SNPs). Horizontal pleiotropy, heterogeneity, or weak 
instrument bias were not existed between IVs and uro-
lithiasis (Table S10). Figure  5 presents the bidirectional 
MR results for urolithiasis and plasma lipid levels. The 
reverse MR IVW analysis showed no significant causal 
association between urolithiasis risk and lipid levels.

Multivariable Mendelian randomization analysis
MVMR analysis was performed to identify independent 
causal risk factors. After adjusting for interactions among 
plasma lipids, MVMR estimates using both the IVW 
and MR-PRESSO methods showed that genetically pre-
dicted higher levels of PE (18:2_0:0) [OR: 0.936; 95%CI: 

0.887, 0.987; P = 0.0149], higher PC (16:0_20:4) levels 
[OR: 0.895; 95%CI: 0.810, 0.988; P = 0.0284], and lower 
PE (16:0_20:4) levels [OR: 1.084; 95%CI: 1.017, 1.154; 
P = 0.0126] were significant independent protective or 
risk factors for urolithiasis (Fig. 6).

Discussion
The elevated prevalence and recurrence rates of urolithi-
asis remain significant clinical concerns globally. Urinary 
tract stones can cause symptoms such as pain, hematuria, 
and fever. As the condition progresses, urolithiasis can 
lead to recurrent urinary tract infections, acute urinary 
tract obstruction, and even acute or chronic renal insuf-
ficiency [47]. Management typically involves surgical 
interventions like extracorporeal shock wave lithotripsy, 
percutaneous nephrolithotripsy, and transurethral litho-
tripsy [48, 49]. However, these procedures are complex, 
costly, and often fail to prevent stone recurrence [50], 
exacerbating the financial and psychological burdens 
on patients. Consequently, there has been increasing 

Fig. 5 Mendelian randomization IVW estimates of urolithiasis on the levels of initially identified plasma lipids. IVW: inverse variance weighted; OR, odds 
ratio; SNP: single nucleotide polymorphism
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scholarly focus on elucidating the aetiology and preven-
tive strategies for urinary tract stones.

This MR study investigated the causal relation between 
lipid species levels and urolithiasis risk using a compre-
hensive genetic dataset of 482,123 controls and 6,223 
cases. Two large GWAS datasets were combined to 
systematically assess the causal effects of 179 lipid spe-
cies on urolithiasis. The MR results provided compel-
ling evidence that genetically predicted high levels of SE 
(27:1/20:4) are associated with a lower risk of urolithiasis 
[OR: 0.93; 95%CI: 0.89, 0.96; PIVW = 1.5 × 10− 4]. Repli-
cated and meta-analysis results confirmed that geneti-
cally determined levels of SE (27:1/20:4), PC (16:0_20:4), 
and PC (16:1_20:4) were linked to a reduced genetic sus-
ceptibility to urinary stones. In contrast, higher levels 
of PE (18:2_0:0), PE (16:0_20:4), and PE (18:1_18:1) sug-
gested an increased risk of urolithiasis. MVMR analy-
sis showed that PE (18:2_0:0), PC (16:0_20:4), and PE 
(16:0_20:4) could independently influence the risk of 
stone disease, even after accounting for interactions with 
other plasma lipids.

SEs regulate cholesterol homeostasis and have a com-
plex role in urolithiasis. SE (27:1/20:4) demonstrated a 
protective effect by enhancing cholesterol efflux medi-
ated by ATP-binding cassette transporter A1, which 
may reduce the formation of small areas of stone for-
mation membranes [9]. Conversely, the accumulation 
of SE in macrophages can promote the transformation 
of foam cells in the renal interstitium, release matrix 
metalloproteinases, and degrade the glycosaminogly-
cans that inhibit stone formation [9]. Plant SEs also 

have notable physiological functions, particularly their 
cholesterol-lowering effect [51]. The protective action 
of SE (27:1/20:4) may help reduce the solubility of uri-
nary stone components by modulating lipid metabolism. 
SEs are involved in cholesterol esterification and incor-
poration into lipoproteins, potentially affecting crys-
tal formation within the body [52]. Moreover, previous 
pharmacological reviews have suggested that SE extracts 
and bioactive compounds may have anti-urolithiasis 
properties [53]. However, these studies have not directly 
demonstrated the therapeutic effects of SEs on urinary 
calculi. The MR study addresses these gaps and provides 
valuable insights into the therapeutic potential of SE 
(27:1/20:4) for urolithiasis.

Glycerophospholipids play a dual role, with PC main-
taining the integrity of the urinary tract epithelial barrier 
through membrane fluidity regulation [54]. The current 
MR study found that PC (16:0_20:4) was negatively corre-
lated with urolithiasis risk. PC, the major phospholipid in 
cell membranes, is crucial for various cellular processes, 
such as inflammation and cell signaling. Elevated levels of 
PC can enhance membrane stability and improve cellular 
resistance to oxidative stress [55], both of which are asso-
ciated with stone prevention.

In contrast, PE, a key component of membrane dynam-
ics, influences vesicular transport and lipid bilayer com-
position [56]. Recent studies suggest that changes in PE 
levels can enhance inflammatory responses and oxidative 
stress, both contributors to renal calculi development 
[57–59]. Specifically, PE promotes crystal adhesion by 
exposing phosphatidylserine residues during oxidative 

Fig. 6 Multivariable MR analysis of the final identified blood plasma lipids. An asterisk (*) indicates the lipid species that has reached the significant 
P < 0.05 threshold. CI: confidence interval; IVW: inverse variance weighted; MVMR: multivariable Mendelian randomization; OR: odds ratio; SNP: single 
nucleotide polymorphism
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stress-induced membrane remodeling [60]. Higher PE 
levels may exacerbate crystallization by altering renal 
tubular cell function or modifying the local urinary 
microenvironment, increasing susceptibility to stone 
formation [61]. Furthermore, altered membrane phos-
pholipids can promote face-selective nucleation and 
the retention of calcium oxalate and calcium phosphate 
crystals, which contribute to growing stones [62]. One 
study reported that phospholipid assemblies containing 
PC could catalyze calcium oxalate stone nucleation [63]. 
The MR findings in this study provide reliable evidence 
for causal inference, addressing the limitations of obser-
vational studies, such as small sample sizes and reverse 
causality.

The lipid-stone interface is also mediated by extracellu-
lar vesicles (EVs). Phosphatidylserine-enriched EVs from 
injured tubular cells act as nucleation sites for calcium 
oxalate crystals, while sphingomyelin-rich EVs inhibit 
aggregation by modulating surface charge [64]. This 
lipid-mediated crystal-matrix interaction is regulated by 
the balance between lithogenic (PEs, ceramide) and anti-
lithogenic (PC, SE (27:1)) species.

While existing research suggests that lipid content and 
interactions regulate urinary stone formation in both 
directions, direct studies on the correlation between 
plasma lipids and urolithiasis remain limited. Moreover, 
these studies offer little in terms of early screening and 
prevention of urolithiasis, highlighting the significance 
of this MR analysis. This study provides new insights 
for drug development in stone disease prevention and 
improving dietary habits. Specifically, lipid-rich com-
pounds like SEs (27:1/20:4), PC (16:0_20:4), and PC 
(16:1_20:4) may serve as active ingredients in inhibiting 
calcium stone growth.

This study has dual translational potential in clini-
cal practice. First, the findings of this study offer critical 
insights for developing next-generation urolithiasis pre-
vention strategies. From a therapeutic perspective, the 
observed risk-reducing effects of SEs, through modu-
lation of cholesterol homeostasis and direct inhibition 
of calcium oxalate crystal aggregation, support their 
pharmaceutical development as nutraceutical agents or 
dietary supplements. From a diagnostic standpoint, the 
MR-identified biomarkers, such as serum/urinary SE 
(27:1/20:4), PC (16:0_20:4), and PC (16:1_20:4), could 
enable precision risk stratification for stone-prone pop-
ulations. Systematically integrating SE profiles with 
genomic markers (e.g., CAV1 mutations) and metabolic 
signatures (oxalate/citrate ratio) could lead to a multidi-
mensional predictive scoring system, advancing person-
alized recurrence-risk modeling and clinical decision 
algorithms.

Study strengths and limitations
The MR approach in this study has several strengths. 
Firstly, TSMR, radial MR, and Steiger test methods were 
employed to assess the impact of 179 types of plasma lip-
ids on the occurrence of urinary calculi in patients. These 
approaches effectively minimize potential confounding 
factors and reverse causality. Secondly, horizontal pleiot-
ropy was addressed through MR-PRESSO and MR-Egger 
regression intercept term tests. Thirdly, repeated analyses 
and meta-analyses were conducted using various meth-
ods, yielding consistent results that were supported by 
accurate data from large-scale GWAS meta-analyses.

This study has several limitations. Although sensitivity 
analyses were conducted to assess the assumptions of the 
MR study, it is important to acknowledge that the possi-
bility of confounding bias or horizontal pleiotropy cannot 
be entirely excluded. To address these concerns, targeted 
sensitivity analyses were performed using WMn and WM 
estimators, which provide robust causal estimates even 
when up to 50% of the instruments are invalid. Addition-
ally, negative control analyses using biologically unrelated 
phenotypes could help exclude systematic pleiotropic 
bias. The OR calculated by the IVW method in this study 
is close to 1, suggesting a relatively weak causal relation 
between exposure and outcome.

Furthermore, the GWAS data used in this research 
were primarily derived from individuals of European 
ancestry in the initial MR analysis. The analysis was per-
formed with a population from East Asia in the replicated 
analysis and meta-analysis, meaning that the final results 
may be influenced by population genetic bias.

Additionally, post-translational modifications of lipids, 
such as oxidation and glycation, may play a crucial role 
in stone pathogenesis but were not captured in standard 
lipid GWAS datasets. This limitation could result in an 
underestimation of the true biological impact of lipids 
on urolithiasis. Therefore, it is important to note that 
GWAS-based lipid measurements primarily reflect static 
circulating levels rather than dynamic biochemical modi-
fications. Future studies integrating metabolomics and 
proteomics approaches would be valuable for capturing a 
broader spectrum of lipid-related biochemical changes in 
stone formation.

Conclusion
This study offers robust evidence for a potential causal 
relationship between six plasma lipids and urolithia-
sis. In particular, SE (27:1/20:4), PC (16:0_20:4), and PC 
(16:1_20:4) appear to serve as protective factors, poten-
tially inhibiting the growth of calcium-containing uri-
nary stones. By integrating Mendelian randomization 
with genomics and lipidomics, this work highlights novel 
biomarkers that could significantly inform both clini-
cal risk assessment and preventive strategies. Clinically, 
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these findings may aid in the development of lipid-based 
diagnostic panels for early identification of individuals at 
higher risk of stone formation. Moreover, they suggest 
that therapeutic modulation of specific lipid species, such 
as through dietary interventions or lipid-targeting nutra-
ceuticals, could be a viable strategy for preventing stone 
recurrence in patients with a history of urolithiasis. For 
example, increasing circulating levels of SE (27:1/20:4) 
or PC (16:0_20:4) through targeted supplementation 
may offer a non-invasive adjunct to current manage-
ment protocols. From a future perspective, integrating 
lipidomic profiling with genetic risk scores could sup-
port personalized prevention models, allowing clinicians 
to stratify patients based on their lipidomic-genomic risk 
and intervene accordingly. Additionally, identifying lipid 
signatures predictive of stone risk could reduce depen-
dence on imaging in routine follow-up and improve long-
term disease monitoring. Moreover, further investigation 
using the latest data from large-scale genetic studies and 
relevant clinical data is essential to validate and expand 
upon the findings of this MR study.
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