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Abstract 

Background and aims  Cardio-kidney-metabolic diseases are major causes of premature death worldwide, 
with type 2 diabetes mellitus (T2DM) playing a critical role. Inflammation and insulin resistance have been implicated 
in the pathogenesis of T2DM. This study aimed to investigate the sex-specific associations of metabolic inflammation 
and insulin resistance with incident T2DM to support personalized prevention and management strategies.

Methods  A retrospective cohort was used to analyse annual health examination data from the general practice 
department of a general hospital in Shanghai between 2021 and 2023. After excluding participants diagnosed 
with T2DM, cardiovascular disease or chronic kidney disease at baseline, 1214 adults were followed up for two years. 
Cox proportional hazards and logistic regression models were used to assess the associations of triglyceride–glu-
cose body mass index (TyG-BMI), the lymphocyte/high-density lipoprotein cholesterol ratio (LHR), the monocyte/
high-density lipoprotein cholesterol ratio (MHR), and the neutrophil/high-density lipoprotein cholesterol ratio (NHR) 
with incident T2DM.

Results  In the total population, TyG-BMI (all HR/OR > 1, P < 0.05), LHR, MHR and NHR were significantly and positively 
associated with incident T2DM. TyG-BMI was significantly associated with incident T2DM in men (both HR/OR > 1, 
P < 0.05), whereas LHR, MHR and NHR were strongly associated with incident T2DM in women (all HR/OR > 1, P < 0.05). 
The interaction effect between LHR and sex was statistically significant.

Conclusion  Sex differences play an important role in incident T2DM. Men should be aware of weight control to avoid 
obesity-related insulin resistance, whereas women should monitor metabolic inflammation indicators such as LHR 
for early detection and intervention of their T2DM risk.
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Introduction
 The epidemic of cardio-kidney-metabolic (CKM) dis-
eases is a serious global challenge and a leading cause of 
premature death [1, 2]. Among the major CKM diseases, 
type 2 diabetes mellitus (T2DM) plays a central role, not 
only as a result of complex interactions between different 
types of modifiable and nonmodifiable risk factors early 
in life but also as a driver of accelerated cardiovascular 
or renal outcomes [3, 4]. Early prevention of T2DM has 
been shown to be effective in reducing patients’ risk of 
developing T2DM and in mitigating the downstream 
effects of the multifaceted CKM syndrome [5–7].

Inflammation and insulin resistance have been recog-
nized as key forces driving the development of CKM syn-
drome, with equally important implications for the onset 
and progression of T2DM [8–10]. These processes not 
only coexist but also act synergistically to amplify meta-
bolic dysfunction, increasing the risk of diabetes and its 
complications and ultimately leading to cardiovascular or 
renal death [11–13].

In recent years, there has been an important shift in 
the measurement of insulin resistance, and many popula-
tion-validated alternative measures have been developed 
[14]. Compared with the gold standard, the hyperinsu-
linaemic-euglycaemic clamp [15], which is difficult to 
perform and disseminate, the simplest and most feasible 
alternative is the triglyceride-glucose index (TyG) and its 
derivatives [16]. Compared with the original TyG index, 
the triglyceride-glucose body mass index (TyG-BMI) is 
more strongly associated with the homeostasis model 
assessment of insulin resistance (HOMA-IR) and is also 
more predictive of insulin resistance than other TyG 
derivatives (triglyceride-glucose waist circumference 
(TyG-WC) and triglyceride-glucose waist height ratio 
(TyG-WHtR)) [17, 18].

Moreover, interest in novel biomarkers of metabolic 
inflammation has increased [19], with the ratio of inflam-
matory cells to high-density lipoprotein cholesterol 
(HDL-C), including the lymphocyte/high-density lipo-
protein cholesterol ratio (LHR), monocyte/high-density 
lipoprotein cholesterol ratio (MHR), and neutrophil/
high-density lipoprotein cholesterol ratio (NHR), con-
sidered favourable indicators of inflammation associated 
with metabolic disorders [20]. Although the relationship 
between an elevated NHR and adverse cardiovascular 
outcomes has been demonstrated [21], the relationship 
between these indicators of metabolic inflammation and 
incident T2DM remains understudied. Establishing this 

association will hopefully reveal new pathogenic mecha-
nisms of T2DM and potential targets for therapeutic 
intervention.

In addition, some studies have shown that there are sig-
nificant differences in susceptibility to insulin resistance 
and the inflammatory response between men and women 
[22–24], suggesting that the development of T2DM may 
involve different pathophysiological mechanisms in dif-
ferent sexes. Therefore, the effects of sex on indicators 
of metabolic inflammation and insulin resistance, as well 
as on the incidence of T2DM, need to be thoroughly 
investigated.

Based on a retrospective analysis of the population 
undergoing annual health examinations, this study aimed 
to assess the associations of metabolic inflammation and 
insulin resistance with the incidence of T2DM over a 
two-year follow-up period to explore possible sex differ-
ences and, ultimately, to provide additional evidence for 
personalized prevention and management strategies for 
cardio-renal metabolic diseases.

Methods
Population and study design
This study used annual health examination data from 
the general practice department of a general hospital 
in Shanghai between 2021 and 2023. After excluding 
those with a baseline diagnosis of type 2 diabetes mel-
litus, cardiovascular disease, or chronic kidney disease 
(N = 280), a total of 1,214 adult participants who attended 
the annual health examination in 2021 and had complete 
baseline data were followed up for 2 years. The partici-
pant screening process and study design framework were 
shown in Supplementary Fig. 1.

The study adhered to the tenets of the Declaration of 
Helsinki. As a retrospective cohort study, this study did 
not involve patient participation or informed consent, 
and the Ethics Committee of Shanghai East Hospital con-
firmed that no ethical approval was required.

Data collection and definition
All the data were obtained from a combination of 
patients’ health records, self-reports, anthropometric 
measurements and laboratory tests. Demographic infor-
mation (sex, age) was collected through health records 
and self-reports, while histories of cardio-kidney-met-
abolic diseases were assessed through health records, 
self-reports and laboratory tests. Trained medical staff 
measured weight and height and calculated BMI. Fasting 
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blood samples were taken for laboratory tests, including 
lymphocyte count, neutrophil count, monocyte count, 
fasting plasma glucose (FPG), glycated haemoglobin 
(HbA1c), triglyceride (TG), total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C), and serum creatinine.

In this study, we considered 5 categories of cardio-kid-
ney-metabolic disease (hypertension, T2DM, dyslipidae-
mia, cardiovascular disease, and chronic kidney disease). 
The relevant definitions and diagnostic criteria were as 
follows:

Hypertension was defined as previously diagnosed or 
self-reported hypertension and current antihyperten-
sive treatment; T2DM was defined as previously diag-
nosed or self-reported type 2 diabetes mellitus, current 
glucose-lowering therapy, and FPG ≥ 7.0 mmol/L or 
HbA1c ≥ 6.5% [25]; Dyslipidaemia was defined as previ-
ously diagnosed or self-reported dyslipidaemia, current 
lipid-modifying therapy, and TG ≥ 2.3 mmol/L, TC ≥ 6.2 
mmol/L, HDL-C < 1.0 mmol/L, or LDL-C ≥ 4.1 mmol/L 
[26]; Cardiovascular disease was defined as previously 
diagnosed or self-reported cardiovascular disease, such 
as ischaemic heart disease, atrial fibrillation, or heart 
failure; Chronic kidney disease was defined as previously 
diagnosed or self-reported chronic kidney disease and an 
estimated glomerular filtration rate (eGFR) less than 60 
mL/min/1.73 m2 based on the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation [27].

Metabolic inflammation indicators
We calculated several indicators of metabolic inflam-
mation, including the lymphocyte/HDL-C ratio (LHR), 
monocyte/HDL-C ratio (MHR) and neutrophil/HDL-C 
ratio (NHR), based on the blood count and HDL-C level 
measured in the peripheral blood.

Insulin resistance indicators
TyG-BMI was used as an alternative indicator of insulin 
resistance in this study and was calculated as ln[TG (mg/
dl) × FPG (mg/dl)]/2*BMI.

Outcome
The outcome (incident T2DM) was defined as a new 
diagnosis or self-reported T2DM, new use of glucose-
lowering therapy, FPG ≥ 7.0 mmol/L or HbA1c ≥ 6.5% at 
annual health examinations during the 2-year follow-up 
period.

Statistical analyses
The variables were grouped by sex (male/female), and 
categorical variables were expressed as frequencies and 

percentages. Differences between groups were tested 
via the chi-squared test. After testing for normality, 
continuous variables were expressed as medians (inter-
quartile range) and differences between groups were 
tested using the Wilcoxon rank-sum test. The log-rank 
test was used to compare incidence rates (100 person-
years) between groups.

Based on prior clinical knowledge, univariate analy-
ses (Supplementary Table 1) and Spearman’s rank cor-
relation test (Supplementary Table  2) were performed 
for statistically significant variables. Sex, age and base-
line diagnoses of hypertension and dyslipidaemia were 
ultimately included as covariates in the adjusted model 
after variables with correlation coefficients greater than 
or equal to 0.25 in relation to the TyG-BMI and meta-
bolic inflammation indicators (LHR, MHR and NHR) 
were excluded. The associations of TyG-BMI, LHR, 
MHR and NHR with incident T2DM were assessed 
using Cox proportional hazards models and logistic 
regression models after conversion of the original TyG-
BMI values were divided by 10. Moreover, sex-strati-
fied analysis was performed to test for sex differences 
in the above associations and possible interactions. In 
addition, the nonlinear associations of TyG-BMI, LHR, 
MHR and NHR with incident T2DM were examined 
via the Cox proportional hazards model and the logistic 
regression model with restricted cubic splines (RCS).

Participants who are diagnosed with hypertension or 
dyslipidaemia at baseline may have difficult-to-measure 
early exposure to metabolic inflammation or insulin 
resistance. Therefore, we repeated the multivariable-
adjusted Cox proportional hazards model and logistic 
regression model to estimate the associations of meta-
bolic inflammation or insulin resistance with incident 
T2DM after excluding such participants (n = 439). 
Two other datasets were also considered for sensitivity 
analyses: (1) excluding participants who did not attend 
an annual health examination in both 2022 and 2023 
(n = 426) and (2) excluding participants who were diag-
nosed with hypertension or dyslipidaemia at baseline 
or who did not attend an annual health examination in 
both 2022 and 2023 (n = 709). Following the results of 
the above analyses, the associations of TyG-BMI and 
LHR with incident T2DM were further examined in 
the original cohort and the sensitivity analysis cohorts, 
adjusting for sex, age and baseline diagnoses of hyper-
tension and dyslipidaemia, in the total population, men 
and women.

All the statistical analyses were performed with 
STATA 18.0 and R 4.4.1. Hazard ratios (HR) or 
odds ratios (OR) and 95% confidence intervals were 
reported, and a two-tailed P < 0.05 was considered sta-
tistically significant.



Page 4 of 11Li et al. Lipids in Health and Disease           (2025) 24:50 

Results
Characteristics of the participants at baseline
Among the 1214 participants included in the analysis, 
536 (44.5%) were female, with a median age of 50 years, a 
median BMI of 23.5 kg/m2, and a baseline prevalence of 
hypertension and dyslipidaemia of 14.91% and 27.10%, 
respectively. Apart from LDL-C, there were statistically sig-
nificant differences in baseline characteristics between the 
male and female subgroups (all P < 0.05). Among the female 
participants, age (48 vs. 51 years), BMI (21.7 kg/m2 vs. 24.7 
kg/m2), percentage of hypertension (8.21% vs. 20.21%), 
percentage of dyslipidaemia (18.47% vs. 33.92%), SBP (123 
mmHg vs. 132 mmHg), DBP (73 mmHg vs. 82 mmHg), FPG 
(5.07 mmol/L vs. 5.20 mmol/L), TG (1. 00 mmol/L vs. 1.35 
mmol/L), LDL-C (3.00 mmol/L vs. 3.08 mmol/L), TyG-BMI 
(179.63 vs. 214.74), LHR (1.13 vs. 1.58), MHR (0.22 vs. 0. 35) 
and NHR (1.81 vs. 2.60) were greater in men, whereas TC 
(4.89 mmol/L vs. 4.75 mmol/L) and HDL-C (1.62 mmol/L 
vs. 1.23 mmol/L) were the opposite. The incidence of T2DM 
was slightly higher in the female group (3.65/100 person-
years) than in the male group (3.47/100 person-years), but 
the difference was not statistically significant (Table 1).

Cox proportional hazards model and restricted cubic 
spline analysis
With TyG-BMI, LHR, MHR and NHR as independ-
ent variables, the results of the Cox proportional haz-
ards models were shown as Table  2. The unadjusted 

model results indicated a positive correlation between 
the incidence risk of T2DM and TyG-BMI, LHR, MHR 
and NHR (all P < 0.05); after adjustment for sex, age and 
baseline diagnoses of hypertension and dyslipidaemia, 
TyG-BMI (HR:1.09, 95% CI:1.02–1.17, P = 0.013), LHR 
(HR:1.47, 95% CI:1.03–2.09, P = 0.031), MHR (HR:6.69, 
95% CI:1.47–30.52, P = 0.014) and NHR (HR:1.25, 95% 
CI:1.06–1.49, P = 0.09) remained significantly associated 
with the incidence risk of T2DM. Further stratified analy-
sis by sex revealed that TyG-BMI was more strongly asso-
ciated with the risk of incident T2DM in men (P = 0.007), 
with a slightly higher HR (HR:1.14, 95% CI: 1.04–1.25) 
than in women (HR:1.11, 95% CI: 1.00–1.23), but the 
latter was not statistically significant (P = 0.060). LHR 
(HR:2.39, 95% CI:1.39–4.09, P = 0.002), MHR (HR:21.18, 
95% CI:2.02–221.64, P = 0.011) and NHR (HR:1.36, 95% 
CI:1.08–1.70, P = 0.008) were significantly correlated with 
T2DM incidence risk in women. However, no significant 
correlation was identified between LHR, NHR and MHR 
and T2DM incidence risk in men (all P > 0.05). Among 
the interaction terms of sex with TyG-BMI, LHR, MHR 
and NHR, only the interaction term of sex with LHR was 
statistically significant (P for interaction were 0.026 and 
0.034, respectively), suggesting that sex may influence the 
association between LHR and incident T2DM.

Using restricted cubic spline analysis, as shown in 
Fig. 1, no nonlinear relationships were observed between 
TyG-BMI, LHR, MHR or NHR and the risk of incident 

Table 1  Characteristics of the participants at baseline

Abbreviations: BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, FPG fasting plasma glucose, TG triglyceride, TC total cholesterol, 
HDL-C, high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TyG-BMI triglyceride glucose-body mass index, LHR lymphocyte-high density 
lipoprotein cholesterol ratio, MHR monocyte-high density lipoprotein cholesterol ratio, NHR neutrophil-high density lipoprotein cholesterol ratio

Total (N = 1214) Male (N = 678) Female (N = 536) P

Female, n(%) 536(44.15) - - < 0.001

Age(year), [M(IOR)] 50(40 to 58) 51(41 to 59) 48(39 to 56) < 0.001

BMI(kg/m2), [M(IOR)] 23.5(21.5 to 25.7) 24.7(23.2 to 26.8) 21.7(20.3 to 23.5) < 0.001

Hypertension, n(%) 181(14.91) 137(20.21) 44(8.21) < 0.001

Dyslipidaemia, n(%) 329(27.10) 230(33.92) 99(18.47) < 0.001

SBP(mmHg), [M(IOR)] 128(118 to 139) 132(122 to 142) 123(114 to 134) < 0.001

DBP(mmHg), [M(IOR)] 78(71 to 84) 82(76 to 87) 73(67 to 79) < 0.001

FPG(mmol/L), [M(IOR)] 5.13(4.82 to 5.47) 5.20(4.88 to 5.58) 5.07(4.76 to 5.34) < 0.001

HbA1c(%), [M(IOR)] 5.5(5.3 to 5.8) 5.5(5.3 to 5.8) 5.5(5.0 to 5.6) < 0.001

TG(mmol/L), [M(IOR)] 1.17(0.84 to 1.68) 1.35(0.98 to 1.85) 1.00(0.74 to 1.42) < 0.001

TC(mmol/L), [M(IOR)] 4.79(4.26 to 5.45) 4.75(4.15 to 5.37) 4.89(4.33 to 5.52) 0.002

HDL-C(mmol/L), [M(IOR)] 1.38(1.15 to 1.67) 1.23(1.08 to 1.44) 1.62(1.37 to 1.86) < 0.001

LDL-C(mmol/L), [M(IOR)] 3.04(2.55 to 3.56) 3.08(2.56 to 3.57) 3.00(2.55 to 3.54) 0.387

TyG-BMI, [M(IOR)] 201.24(176.78 to 223.82) 214.74(196.82 to 235.35) 179.63(164.69 to 202.19) < 0.001

LHR, [M(IOR)] 1.37(1.02 to 1.80) 1.58(1.20 to 1.98) 1.13(0.88 to 1.47) < 0.001

MHR, [M(IOR)] 0.29(0.21 to 0.39) 0.35(0.27 to 0.46) 0.22(0.17 to 0.29) < 0.001

NHR, [M(IOR)] 2.21(1.62 to 3.02) 2.60(1.98 to 3.45) 1.81(1.36 to 2.47) < 0.001

Incidence rate(100 person-years) 3.55 3.47 3.65 0.824
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Table 2  Associations of the TyG-BMI, LHR, MHR and NHR with incident type 2 diabetes mellitus according to Cox proportional hazards 
models

Abbreviations: TyG-BMI triglyceride glucose-body mass index, LHR lymphocyte-high density lipoprotein cholesterol ratio, MHR monocyte-high density lipoprotein 
cholesterol ratio, NHR neutrophil-high density lipoprotein cholesterol ratio
a The adjusted models were adjusted for sex (male as reference), age, and baseline diagnoses of hypertension and dyslipidaemia
b TyG-BMI was converted to one-tenth of its original value

Crude model Adjusted modela

HR(95% CI) P P interaction HR(95% CI) P P interaction

TyG-BMIb Total 1.09(1.02,1.15) 0.007 0.106 1.09(1.02,1.17) 0.013 0.193

Male 1.16(1.07,1.27) < 0.001 1.14(1.04,1.25) 0.007

Female 1.04(0.94,1.16) 0.440 1.11(1.00,1.23) 0.060

LHR Total 1.43(1.06,1.92) 0.019 0.026 1.47(1.03,2.09) 0.031 0.034

Male 1.15(0.75,1.77) 0.527 1.10(0.68,1.79) 0.697

Female 2.38(1.47,3.84) < 0.001 2.39(1.39,4.09) 0.002

MHR Total 4.68(1.27,17.22) 0.020 0.154 6.69(1.47,30.52) 0.014 0.177

Male 3.52(0.56,21.96) 0.178 3.36(0.45,25.03) 0.237

Female 26.71(3.19,223.68) 0.002 21.18(2.02,221.64) 0.011

NHR Total 1.25(1.07,1.45) 0.005 0.302 1.25(1.06,1.49) 0.009 0.356

Male 1.18(0.95,1.47) 0.142 1.14(0.90,1.46) 0.281

Female 1.38(1.13,1.69) 0.002 1.36(1.08,1.70) 0.008

Fig. 1  Restricted cubic spline curves of TyG-BMI, LHR, MHR and NHR associated with incident type 2 diabetes mellitus according to Cox 
proportional hazards models in the total population A, males B and females C. All models were adjusted for sex (male as reference), age, 
and baseline diagnoses of hypertension and dyslipidaemia. Abbreviations: TyG-BMI, triglyceride glucose-body mass index; LHR, lymphocyte-high 
density lipoprotein cholesterol ratio; MHR, monocyte-high density lipoprotein cholesterol ratio; NHR, neutrophil-high density lipoprotein cholesterol 
ratio
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T2DM (all P for nonlinear > 0.05). In the total population, 
TyG-BMI, MHR and NHR were positively correlated 
with the risk of incident T2DM (all P for overall < 0.05). 
When stratified by sex, the association between TyG-
BMI and incident T2DM was more significant in men 
(P for overall = 0.011), whereas the associations of LHR 
and NHR with incident T2DM were more significant in 
women (P for overall were 0.020 and 0.041, respectively).

Logistic regression model and restricted cubic spline 
analysis
The results of the logistic regression analyses were simi-
lar to those of the Cox proportional hazards models 
(Table  3). TyG-BMI, LHR, MHR and NHR were sig-
nificantly positively associated with T2DM incidence 
risk with or without adjustment for sex, age and base-
line diagnosis of hypertension and dyslipidaemia (all 
P < 0.05). When stratified by sex, the positive associa-
tion of TyG-BMI with incident T2DM was more sig-
nificant in men (OR:1.16, 95% CI:1.04–1.29, P = 0.006), 
and the positive associations of LHR (OR:2.71, 95% 
CI:1.48–4.98, P = 0.001), MHR (OR:36.58, 95% CI:2.33–
574.62, P = 0.010) and NHR (OR:1.44, 95% CI:1.10–1.89, 
P = 0.008) with incident T2DM were more significant in 
women. In the interaction analysis, the same statistical 
significance was observed only for the interaction term 
of sex and LHR (P for interaction were 0.021 and 0.027, 
respectively).

Additional restricted cubic spline analysis (Fig. 2) failed 
to detect any nonlinear associations of TyG-BMI, LHR, 

MHR or NHR with the risk of incident T2DM (all P for 
nonlinear > 0.05). In the total population, TyG-BMI, 
MHR and NHR were all similarly positively associated 
with the risk of incident T2DM (all P for overall < 0.05). 
While the association of TyG-BMI with the risk of inci-
dent T2DM was more significant in men (P for over-
all = 0.011), the associations of LHR and NHR with the 
risk of incident T2DM were more significant in women 
(P for overall were 0.019 and 0.040, respectively).

Sensitivity analyses
After excluding participants with diagnosed hyperten-
sion and dyslipidaemia at baseline (Table  4), only LHR 
was significantly positively associated with the risk of 
incident T2DM in the total population (HR:1.75, 95% 
CI:1.02–1.2.99, P = 0.042; OR:1.84, 95% CI:1.04–3.26, 
P = 0.037). In terms of sex, the significant positive asso-
ciations of LHR, MHR and NHR with the risk of incident 
T2DM in women (all HR/OR > 1, P < 0.05) were con-
sistent with the main analysis, and the interaction term 
between gender and LHR was statistically significant (P 
for interaction were 0.030 and 0.020, respectively).

After excluding participants who did not attend an 
annual health examination in both 2022 and 2023 (Sup-
plementary Table 3), the correlations between TyG-BMI, 
MHR and NHR and T2DM incidence risk in the total 
population (all HR/OR > 1, P < 0.05) were similar to the 
results of main analyses. In the gender stratification, a 
significant positive relationship between TyG-BMI and 
the incident T2DM was observed for the first time in 

Table 3  Associations of the TyG-BMI, LHR, MHR and NHR with incident type 2 diabetes mellitus according to logistic regression 
models

Abbreviations: TyG-BMI triglyceride glucose-body mass index, LHR lymphocyte-high density lipoprotein cholesterol ratio, MHR monocyte-high density lipoprotein 
cholesterol ratio, NHR neutrophil-high density lipoprotein cholesterol ratio
a The adjusted models were adjusted for sex (male as reference), age, and baseline diagnoses of hypertension and dyslipidaemia
b TyG-BMI was converted to one-tenth of its original value

Crude model Adjusted modela

OR(95% CI) P P interaction OR(95% CI) P P interaction

TyG-BMIb Total 1.09(1.03,1.16) 0.006 0.091 1.10(1.02,1.18) 0.010 0.164

Male 1.18(1.08,1.30) < 0.001 1.16(1.04,1.29) 0.006

Female 1.04(0.94,1.16) 0.424 1.12(1.00,1.25) 0.053

LHR Total 1.48(1.07,2.03) 0.016 0.021 1.52(1.05,2.21) 0.028 0.027

Male 1.16(074,1.82) 0.512 1.10(0.66,1.83) 0.708

Female 2.70(1.55,4.69) < 0.001 2.71(1.48,4.98) 0.001

MHR Total 5.39(1.34,21.60) 0.017 0.129 8.13(1.57,41.95) 0.012 0.153

Male 3.91(0.57,27.03) 0.167 3.71(0.44,30.98) 0.226

Female 47.79(3.59,635.52) 0.003 36.58(2.33,574.62) 0.010

NHR Total 1.27(1.08, 1.50) 0.004 0.248 1.29(1.07,1.55) 0.008 0.301

Male 1.20(0.95,1.52) 0.129 1.16(0.89,1.49) 0.268

Female 1.47(1.14,1.88) 0.002 1.44(1.10,1.89) 0.008



Page 7 of 11Li et al. Lipids in Health and Disease           (2025) 24:50 	

women (HR:1.14, 95% CI:1.02–1.28, P = 0.021; OR:1.17, 
95% CI:1.03–1.33, P = 0. 016) and was slightly greater 
in women than in men (HR:1.13, 95% CI:1.03–1.24, 

P = 0.008; OR:1.16, 95% CI:1.04–1.28, P = 0.006), but none 
of the interaction terms between sex and TyG-BMI were 
statistically significant (both P for interaction > 0.05.). The 

Fig. 2  Restricted cubic spline curves of TyG-BMI, LHR, MHR and NHR associated with incident type 2 diabetes mellitus according to logistic 
regression models in the total population A, males B and females C. All models were adjusted for sex (male as reference), age, and baseline 
diagnoses of hypertension and dyslipidaemia. Abbreviations: TyG-BMI, triglyceride glucose-body mass index; LHR, lymphocyte-high density 
lipoprotein cholesterol ratio; MHR, monocyte-high density lipoprotein cholesterol ratio; NHR, neutrophil-high density lipoprotein cholesterol ratio

Table 4  Associations of the TyG-BMI, LHR, MHR and NHR with incident type 2 diabetes mellitus in sensitivity analysis cohort 1 (N = 775)

Abbreviations: TyG-BMI triglyceride glucose-body mass index, LHR lymphocyte-high density lipoprotein cholesterol ratio, MHR monocyte-high density lipoprotein 
cholesterol ratio, NHR neutrophil-high density lipoprotein cholesterol ratio
a The adjusted models were adjusted for sex (male as reference) and age
b TyG-BMI was converted to one-tenth of its original value

Cox proportional hazards model a Logistic regression model a

HR(95% CI) P P interaction OR(95% CI) P P interaction

TyG-BMIb Total 1.07(0.97,1.18) 0.192 0.677 1.08(0.97,1.20) 0.179 0.675

Male 1.10(0.93,1.29) 0.261 1.10(0.93,1.30) 0.248

Female 1.06(0.93,1.21) 0.382 1.07(0.93,1.23) 0.363

LHR Total 1.75(1.02,2.99) 0.042 0.030 1.84(1.04,3.26) 0.037 0.020

Male 0.79(0.30,2.08) 0.628 0.78(0.29,2.11) 0.622

Female 2.67(1.41,5.06) 0.003 3.13(1.51,6.46) 0.002

MHR Total 6.22(0.68,56.52) 0.104 0.150 7.60(0.68,84.69) 0.099 0.124

Male 1.20(0.03,48.50) 0.924 1.21(0.03,55.08) 0.923

Female 34.50(1.46,814.76) 0.028 57.10(1.65,1978.95) 0.025

NHR Total 1.27(0.96,1.68) 0.088 0.038 1.31(0.97,1.77) 0.081 0.024

Male 0.75(0.41,1.37) 0.345 0.74(0.40,1.37) 0.337

Female 1.49(1.12,1.99) 0.006 1.65(1.15,2.37) 0.006
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significant positive associations of LHR, MHR and NHR 
with the risk of incident T2DM in women (all HR/OR > 1, 
P < 0.05) were consistent with the main analysis, and the 
interaction term between sex and the LHR was statisti-
cally significant (P for interaction were 0.027 and 0.018, 
respectively).

After excluding participants who were diagnosed with 
hypertension or dyslipidaemia at baseline or who did 
not attend an annual health examination in both 2022 
and 2023 (Supplementary Table  4), only LHR and NHR 
were significantly and positively associated with the risk 
of incident T2DM in the total population (all HR/OR > 1, 
P < 0.05). Significant positive associations of LHR, MHR 
and NHR with the risk of incident T2DM in women were 
still observed in sex stratification (all HR/OR > 1, P < 0.05), 
and the interaction terms of sex with LHR and NHR were 
statistically significant (all P for interaction < 0.05).

The results of the completely adjusted analyses, includ-
ing both TyG-BMI and LHR, are shown in Supplemen-
tary Table 5. In the total population, TyG-BMI was only 
significantly associated with incident T2DM when partic-
ipants who did not attend an annual health examination 
in both 2022 and 2023 were excluded (both HR/OR > 1, 
P < 0.05). In the male subgroup, the association between 
TyG-BMI and incident T2DM was statistically significant 
only when participants with hypertension and dyslipidae-
mia at baseline were included (both HR/OR > 1, P < 0.05). 
In contrast, in the female subgroup, significant positive 
associations of LHR with incident T2DM were observed 
regardless of the cohort datasets (all HR/OR > 1, P < 0.05).

Discussion
This study provides insights into the sex-specific associa-
tions of metabolic inflammation and insulin resistance 
indicators with incident T2DM. The results revealed 
that (1) TyG-BMI, LHR, MHR and NHR were posi-
tively associated with the risk of incident T2DM in the 
total population and that (2) TyG-BMI was significantly 
associated with incident T2DM in males, whereas LHR, 
MHR and NHR were strongly correlated with incident 
T2DM in females, which may be related to inherent dif-
ferences in adipose tissue function, metabolic regulation 
and immune response between males and females [23, 
28–31].

Similar to previous findings [32–37], TyG-BMI was 
significantly associated with the risk of incident T2DM 
in the primary analyses and was more significant in 
men, but no interaction between TyG-BMI and sex was 
ever tested. This finding is also consistent with the sex-
specific mechanisms of insulin resistance suggested by 
previous studies. Men have a greater tendency to develop 
central obesity, and the chronic low-grade inflamma-
tory state resulting from excess abdominal adiposity 

activates inflammatory pathways such as nuclear factor 
kappa-B (NF-κB), which in turn impairs insulin signal-
ling pathways and promotes the onset of insulin resist-
ance [30]. In contrast, although women generally have a 
greater proportion of subcutaneous adiposity, oestrogens 
inhibit the production of the inflammatory mediators 
tumour necrosis factor-α (TNF-α) and interleukin 6 (IL-
6), thereby reducing insulin resistance [38]. On the other 
hand, the effect size (HR/OR) of TyG-BMI failed to main-
tain robust statistical significance in multiple sensitiv-
ity analyses, which may be partly because the follow-up 
period was short (only 2 years), and some of the partici-
pants who were normoglycemic at baseline, even if they 
had greater insulin resistance, may have just progressed 
to prediabetes, which is not yet sufficient for the develop-
ment of T2DM. In addition, compared with the partici-
pants included in the sensitivity analyses, those excluded 
with hypertension and dyslipidaemia at baseline had a 
relatively higher BMI (24.8 (22.8 to 27.0) kg/m2 vs. 22.8 
(21.0 to 24.9) kg/m2) and TyG-BMI (219.45 (199.69 to 
242.20) vs. 191.76 (169.62 to 211.82)), which had a sig-
nificantly higher incidence rate of 4.33/100 person-years 
vs. 3.11/100 person-years. This could also be a potential 
explanation for the lack of robustness in the observed 
effect size for TyG-BMI [39].

The associations of the metabolic inflammation indi-
cators LHR, MHR and NHR with incident T2DM risk 
were statistically significant overall, especially in the 
female subgroup, and the significant interaction between 
LHR and sex was also detected. Compared with previ-
ous studies that examined metabolic inflammation indi-
cators and the risk of metabolic syndrome [40–44], this 
study first investigated their associations with T2DM, 
a single outcome indicator. In sensitivity analyses, we 
excluded the effects of hypertension and dyslipidaemia, 
two important components of metabolic syndrome. In 
this way, the sex-specific association of T2DM with met-
abolic inflammation based on adipose dysregulation was 
assessed quantitatively. A positive association between 
LHR and T2DM was also found in the baseline analy-
sis of the Prospective Epidemiological Research Studies 
in Iran (PERSIAN) cohort study and was more signifi-
cant in women [45]. From a pathophysiological point of 
view, men tend to have insulin resistance due to excess 
abdominal adiposity, which is accompanied by a pro-
longed state of chronic low-grade inflammation [30]. This 
may cause their LHR to be generally greater than that 
of women, making it difficult to detect the association 
between LHR and incident T2DM, even after adjustment 
for TyG-BMI. While women generally have lower lev-
els of inflammation due to the anti-inflammatory effects 
of oestrogen, this protective effect may be lost with age 
and changes in the reproductive cycle, such as a decline 
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in oestrogen levels after menopause [31]. Furthermore, 
there are discernible sex-specific differences in the form 
of prediabetes [46]. The prevalence of impaired glucose 
tolerance (which reflects postprandial insulin resistance) 
is greater in women than in men, whereas the preva-
lence of impaired fasting glucose (which reflects fast-
ing insulin resistance) is greater in men than in women. 
This may result in a greater proportion of undiagnosed 
prediabetic women. The risk factors associated with this 
condition, including psychogenic obesity, insulin resist-
ance, endothelial dysfunction, inflammation, dyslipidae-
mia and hypertension, are more prevalent and persistent 
in females than in males [47, 48]. Consequently, there 
was an even greater sex bias in T2DM management, 
with females being undertreated [49]. Accordingly, when 
women are identified with elevated LHR levels, there is 
potential for undiagnosed prediabetes and an elevated 
likelihood of developing T2DM. Notably, although the 
present study did not measure the level of lifestyle expo-
sure, such as smoking, alcohol consumption and physical 
activity, unhealthy lifestyles may lead to increased levels 
of inflammation, which may be manifested as an increase 
in lymphocytes [50]. As a result, the LHR could be con-
sidered a composite assessment of the inflammatory state 
of the organism, integrating metabolic and behavioural 
correlates [19].

Strengths and limitations
Notably, this study is the first to evaluate HDL-C-related 
metabolic inflammation metrics to predict T2DM inci-
dence risk in a Chinese population and provides a new 
perspective to explore the potential mechanisms of 
T2DM occurrence by sex through sex-specific asso-
ciation analyses of metabolic inflammation and insulin 
resistance with incident T2DM. However, this study has 
several limitations. First, as a single-centre, short-term 
study, the limited sample size and representativeness 
limit the ability to extrapolate the findings, and validation 
in a national cohort is needed. Second, although complex 
interactions of metabolic factors were considered, TyG-
BMI, LHR, MHR and NHR, which are comprehensive 
measures of the body’s inflammatory state and insulin 
resistance, were included, and several sensitivity analy-
ses were performed. There may still be unmeasured and 
difficult-to-eliminate confounders. For example, the link 
between lifestyle and T2DM has been extensively docu-
mented, particularly with respect to the effects of alcohol 
consumption on metabolic processes in the body. How-
ever, due to the unavailability of data, this topic could not 
be discussed. Similarly, serum insulin levels, which are an 
essential component in calculating HOMA-IR, were not 
included in the dataset. As a result, it was not possible to 

assess the precision of the TyG-BMI in quantifying insu-
lin resistance in men and women. Third, because follow-
up was performed through annual health examinations, 
it is difficult to define the time unit (year) of new T2DM 
diagnosis precisely in months or days, which may slightly 
overestimate or underestimate the effect value estimated 
by the Cox proportional hazards model. Finally, only 234 
people aged 60 years or older were included in this study, 
which is less than 20% and not enough to support the 
model estimation of age stratification. It is necessary to 
further evaluate the predictive value of LHR for T2DM 
risk in postmenopausal women through subsequent in-
depth studies.

Conclusion
Overall, according to the present study, TyG-BMI was 
significantly associated with the risk of incident T2DM in 
men, whereas increased LHR, MHR and NHR predicted 
a greater risk of T2DM in women. These findings sug-
gest that sex differences are not only related to biologi-
cal characteristics but also a nonnegligible factor in the 
development of CKM diseases, especially T2DM. Recog-
nizing sex differences is essential for developing effective 
strategies for the prevention and management of T2DM. 
Men should focus on weight control to avoid central obe-
sity-associated insulin resistance, whereas women should 
monitor sex-specific indicators of metabolic inflamma-
tion, such as LHR, MHR and NHR, to identify and inter-
vene earlier in potential T2DM risk and ultimately reduce 
the public health costs of comprehensive prevention and 
treatment of CKM.
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